blind adaptive
Recently Published Documents


TOTAL DOCUMENTS

650
(FIVE YEARS 32)

H-INDEX

32
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Sagi Tadmor ◽  
Sapir Carmi ◽  
Monika Pinchas

In this paper, we propose for the 16 quadrature amplitude modulation (QAM) input case, a dual-mode (DM), decision directed (DD) multimodulus algorithm (MMA) algorithm for blind adaptive equalization which we name as DM-DD-MMA. In this new proposed algorithm, the MMA method is switched to the DD algorithm, based on a previously obtained expression for the step-size parameter valid at the convergence state of the blind adaptive equalizer, that depends on the channel power, input signal statistics and on the properties of the chosen algorithm. Simulation results show that improved equalization performance is obtained for the 16 QAM input case compared with the DM-CMA (where CMA is the constant modulus algorithm), DM-MCMA (where MCMA is the modified CMA) and MCMA-MDDMA (where MDDMA is the modified decision directed modulus algorithm).


Author(s):  
Elessaid S. Saad

In some communication systems, it is desirable for the receiver to synchronize to the received signal and to adjust the equalizer without having knowledge of a training sequence. Blind equalization uses the initial adjustment of the coefficients without making use of a training sequence. Different adaptive blind equalization algorithms have been developed over the past four decades. In this paper, we investigate the effect of blind equalization on space communication channels. The space channel under investigation is considered to be a multipath frequency selective channel having four paths. The channel is subjected to the phenomenon of InterSymbol Interference (ISI) which severely degrades the performance of the space communication system. Two blind algorithms are used in equalizer adjustment. The impulse responses of the space channel, the blind equalizer and the combination of channel and equalizer for QPSK and 16-QAM transmission are shown. The scatter diagrams for the transmitted sequence, received sequence, and the output of the equalizer using two of the blind algorithms are shown.


2021 ◽  
Author(s):  
Arshad Farhad ◽  
Dae-Ho Kim ◽  
Jeong-Sun Yoon ◽  
Jae-Young Pyun

Doklady BGUIR ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 11-20
Author(s):  
V. P. Tuzlukov

In this paper, two different receiver structures to multiuser detection that are appropriate for the code-division multiple-access systems with antenna arrays in fading channels are investigated and compared. We analyze and compare the performance of the two different multiuser detection structures for uplink or downlink channels. The number of elements of receiving antenna array may be limited in the downlink channel due to the small size of receivers. We assume a synchronous system, but it can be easily extended to an asynchronous system. The first approach is based on the distributed decorrelator where the signal decorrelation is performed by each receiving antenna element independently and decorrelated outputs are combined according to the maximum ratio. The second approach is the central decorrelator where the signal decorrelation is performed once collectively on the outputs from all elements of receiving antenna array. Both decorrelators provide the same performance in the additive white Gaussian noise channels. The distributed decorrelator provides the better performance in flat fading channels. We employ the decorrelator to demonstrate our results. The results discussed in the present paper can be extended to other configurations such as the blind adaptive space-time multiuser detection.


Sign in / Sign up

Export Citation Format

Share Document