Tampere University Rotated Circular Array Dataset

Author(s):  
Arjun Venkat Venkatakrishnan ◽  
Pasi Pertila ◽  
Mikko Parviainen
Keyword(s):  
1988 ◽  
Vol 24 (13) ◽  
pp. 811 ◽  
Author(s):  
M.R. Jones ◽  
H.D. Griffiths

Author(s):  
Ke Wang ◽  
Jianxin Yi ◽  
Cheng Feng ◽  
Yunhua Rao ◽  
Xianrong Wan

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 152342-152350
Author(s):  
Hatem Rmili ◽  
Khaldoun Alkhalifeh ◽  
Mohamed Zarouan ◽  
Wassim Zouch ◽  
Mohammad Tariqul Islam

2005 ◽  
Vol 127 (3) ◽  
pp. 336-344 ◽  
Author(s):  
Shyamal C. Mondal ◽  
Paul D. Wilcox ◽  
Bruce W. Drinkwater

Two-dimensional (2D) phased arrays have the potential to significantly change the way in which engineering components in safety critical industries are inspected. In addition to enabling a three-dimensional (3D) volume of a component to be inspected from a single location, they could also be used in a C-scan configuration. The latter would enable any point in a component to be interrogated over a range of solid angles, allowing more accurate defect characterization and sizing. This paper describes the simulation and evaluation of grid, cross and circular 2D phased array element configurations. The aim of the cross and circle configurations is to increase the effective aperture for a given number of elements. Due to the multitude of possible array element configurations a model, based on Huygens’ principle, has been developed to allow analysis and comparison of candidate array designs. In addition to the element configuration, key issues such as element size, spacing, and frequency are discussed and quantitatively compared using the volume of the 3D point spread function (PSF) as a measurand. The results of this modeling indicate that, for a given number of elements, a circular array performs best and that the element spacing should be less than half a wavelength to avoid grating lobes. A prototype circular array has been built and initial results are presented. These show that a flat bottomed hole, half a wavelength in diameter, can be imaged. Furthermore, it is shown that the volume of the 3D reflection obtained experimentally from the end of the hole compares well with the volume of the 3D PSF predicted for the array at that point.


Sign in / Sign up

Export Citation Format

Share Document