Optimized self-adaptive PID speed control for autonomous vehicles

Author(s):  
Yassine Kebbati ◽  
Naima Ait-Oufroukh ◽  
Vincent Vigneron ◽  
Dalil Ichalal ◽  
Dominique Gruyer
Author(s):  
Wenxin Lai ◽  
Yujia Tian ◽  
Shujun Han ◽  
Yue Lin ◽  
Yongiiang Xue ◽  
...  

2022 ◽  
Vol 166 ◽  
pp. 106566
Author(s):  
Zhigui Chen ◽  
Xuesong Wang ◽  
Qiming Guo ◽  
Andrew Tarko

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3672 ◽  
Author(s):  
Chao Lu ◽  
Jianwei Gong ◽  
Chen Lv ◽  
Xin Chen ◽  
Dongpu Cao ◽  
...  

As the main component of an autonomous driving system, the motion planner plays an essential role for safe and efficient driving. However, traditional motion planners cannot make full use of the on-board sensing information and lack the ability to efficiently adapt to different driving scenes and behaviors of different drivers. To overcome this limitation, a personalized behavior learning system (PBLS) is proposed in this paper to improve the performance of the traditional motion planner. This system is based on the neural reinforcement learning (NRL) technique, which can learn from human drivers online based on the on-board sensing information and realize human-like longitudinal speed control (LSC) through the learning from demonstration (LFD) paradigm. Under the LFD framework, the desired speed of human drivers can be learned by PBLS and converted to the low-level control commands by a proportion integration differentiation (PID) controller. Experiments using driving simulator and real driving data show that PBLS can adapt to different drivers by reproducing their driving behaviors for LSC in different scenes. Moreover, through a comparative experiment with the traditional adaptive cruise control (ACC) system, the proposed PBLS demonstrates a superior performance in maintaining driving comfort and smoothness.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Min Zhao ◽  
Danyang Qin ◽  
Ruolin Guo ◽  
Guangchao Xu

The communication network of autonomous vehicles is composed of multiple sensors working together, and its dynamic topology makes it vulnerable to common attacks such as black hole attack, gray hole attack, rushing attack, and flooding attack, which pose a threat to the safety of passengers and vehicles; most of the existing safety detection mechanisms for a vehicle can only detect attacks but cannot intelligently defend against attacks. To this end, an efficient protection mechanism based on self-adaptive decision (SD-EPM) is proposed, which is divided into the offline phase and the online phase. The online phase consists of two parts: intrusion detection and efficient response. Attack detection and defense in the vehicular ad hoc networks (VANETs) are performed in terms of the attack credibility value (AC), the network performance attenuation value (NPA), and the list of self-adaptive decision. The simulation results show that the proposed mechanism can correctly identify the attack and respond effectively to different attack types. And, the negative impact on VANETs is small.


Sign in / Sign up

Export Citation Format

Share Document