Preview Control of Automotive Active Suspension Systems to Improve Ride Comfort Using V2V Communication

Author(s):  
Jae-Hoon Jeong ◽  
Sun Young Kim ◽  
Baek-Soon Kwon
2021 ◽  
Vol 69 (6) ◽  
pp. 485-498
Author(s):  
Felix Anhalt ◽  
Boris Lohmann

Abstract By applying disturbance feedforward control in active suspension systems, knowledge of the road profile can be used to increase ride comfort and safety. As the assumed road profile will never match the real one perfectly, we examine the performance of different disturbance compensators under various deteriorations of the assumed road profile using both synthetic and measured profiles and two quarter vehicle models of different complexity. While a generally valid statement on the maximum tolerable deterioration cannot be made, we identify particularly critical factors and derive recommendations for practical use.


Author(s):  
D A Crolla ◽  
D N L Horton ◽  
R H Pitcher ◽  
J A Lines

After a review of recent developments in active suspension systems, a semi-active system fitted to an off-road vehicle is described. Theoretically predicted results are presented alongside data measured on the actual vehicle. The benefits of the semi-active system over a passive suspension are improved ride comfort and improved body attitude control.


Author(s):  
Baek-soon Kwon ◽  
Daejun Kang ◽  
Kyongsu Yi

This paper deals with the design of a fault-tolerant control scheme of active suspension systems for vehicle ride comfort. Unknown actuator failures from a variety of reasons cause performance deterioration of the active suspension controller. The proposed fault-tolerant control algorithm consists of two parts: a compensation for actuator failure and a fault mode selector. The main function of the fault compensation strategy is to estimate and compensate for the loss of effectiveness of the actuators. A suspension state observer and a disturbance observer operate simultaneously to determine the feedback control input. The controller and observer have been developed based on a reduced full-car dynamic model that contains only the vehicle body dynamics. The main advantage of the proposed observer is that an easily accessible and inexpensive measurement is only required and the effect of unknown road disturbance on the estimation error is completely removed. To cope with complete failure cases, the fault mode selector is also designed to redistribute the control input to the remaining healthy actuators. Tracking of the loss of effectiveness of the actuators is used for the fault model identification. The performance of the proposed approach has been evaluated via simulation studies. It is shown that the vehicle ride comfort in the presence of actuator faults can be improved by the proposed combined strategy of the fault compensation method and the fault mode selector.


Author(s):  
Francesco Braghin ◽  
Alessandro Prada ◽  
Edoardo Sabbioni

Active and semi-active suspension systems are widely diffused into the automotive industry and several control strategies have been proposed in the literature both concerning ride comfort and handling. The capability of several suspension active control systems in enhancing the vehicle handling performances are compared in this paper. In particular, a low-bandwidth active suspension (actuator in series with the suspension spring), an active antiroll bar, an active camber suspension and a semi-active high-bandwidth suspension (closed loop damper control) are considered. The benchmark is represented by an ideal vehicle which does not present any load transfer and has no yaw moment of inertia. The possibility of combining more than one active/semi-active suspension system is also discussed.


2010 ◽  
Vol 17 (2) ◽  
pp. 245-258 ◽  
Author(s):  
M.M. ElMadany ◽  
B.A. Al Bassam ◽  
A.A. Fayed

Sign in / Sign up

Export Citation Format

Share Document