Optimal Control of Ride Comfort of a Passenger Car: Comparison between the Hydro Active and the Fully Active Suspension Systems

Author(s):  
Ehsan Sarshari ◽  
Ali Khaki Sedigh ◽  
Hossein Sadati
2013 ◽  
Vol 340 ◽  
pp. 631-635
Author(s):  
Yong Fa Qin ◽  
Jie Hua ◽  
Long Wei Geng

Vehicles with active suspension systems become more ride comfort and maneuverable stability, many types of active suspensions have been applied to passenger vehicles, but one of the shortcomings of an active susupension system is that the additional control power consumption is needed. The core issues of designing an active suspension system are to minimiaze vibration magnitute and control energy comsuption of the active suspension system. A new mathematic model for an active suspension system is established based on vehicle dynamics and modern control theory. An optimal control law is constructed through solving the Riccati equation, and then the transfer function is deduced to describe the relationship between the vetical velosity of the road roughness and the output of suspension system. Three typical parameters of vehicle ride comfort are researched, such as vertical acceleration of vehicle body, dynamic deflection of suspension system and dynamic deformation of tires. A case of a quarter vehicle model is studied by simulation to show that the proposed method of modeling and designing optimal controller are suitable to develop active suspension systems.


Author(s):  
Yan-Jun Liang ◽  
You-Jun Lu ◽  
De-Xin Gao ◽  
Zhong-Sheng Wang

AbstractTechnique of approximate optimal vibration control and simulation for vehicle active suspension systems are developed. Considered the nonlinear damping of springs, mechanical model and a nonlinear dynamic system for a class of tracked vehicle suspension vibration control are established and the corresponding system of state space form is described. To prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an approximate optimal vibration controller is designed, and an algorithm is presented for the vibration controller. Numerical simulation results illustrate the effectiveness of the proposed technique.


2021 ◽  
Vol 69 (6) ◽  
pp. 485-498
Author(s):  
Felix Anhalt ◽  
Boris Lohmann

Abstract By applying disturbance feedforward control in active suspension systems, knowledge of the road profile can be used to increase ride comfort and safety. As the assumed road profile will never match the real one perfectly, we examine the performance of different disturbance compensators under various deteriorations of the assumed road profile using both synthetic and measured profiles and two quarter vehicle models of different complexity. While a generally valid statement on the maximum tolerable deterioration cannot be made, we identify particularly critical factors and derive recommendations for practical use.


Author(s):  
Dimitrios Koulocheris ◽  
Georgios Papaioannou ◽  
Emmanouil Chrysos

Author(s):  
P.P.D. Rao ◽  
S. Palli ◽  
R.C. Sharma

Conventional vehicle suspension systems, which are passive in nature consists of springs with constant stiffness and dampers with constant damping coefficient. These suspension systems cannot meet the characteristics such as ride comfort, road handing and suspension deflection during abnormal road conditions simultaneously. Active and semi-active suspension systems are the solutions to achieve the desired suspension characteristics. Since, active system is bulky and requires high energy for working, a semi-active suspension system is considered in the present work to analyze vehicle traversing over various road profiles for ride comfort. Mathematical model of a 7 DoF passenger car is formulated using Newton’s method. A semi-active suspension system with skyhook linear control strategy avoids the road excitations at resonant frequencies by shifting the natural frequencies of the model by varying damping coefficients based on the vehicle response for different road conditions where the excitations could be harmonic, transient and random. Modal analysis is carried out to identify the un-damped natural frequencies and mode shapes for different values of damping. The above analyses are carried out through analytical and numerical methods using MATLAB and ANSYS software respectively and the results obtained from both are in good agreement.


Sign in / Sign up

Export Citation Format

Share Document