road profile
Recently Published Documents


TOTAL DOCUMENTS

288
(FIVE YEARS 85)

H-INDEX

17
(FIVE YEARS 4)

2021 ◽  
Vol 2129 (1) ◽  
pp. 012014
Author(s):  
M H Ab Talib ◽  
I Z Mat Darus ◽  
H M Yatim ◽  
M S Hadi ◽  
N M R Shaharuddin ◽  
...  

Abstract The semi-active suspension (SAS) system is a partial suspension device used in the vehicle system to improve the ride comfort and road handling. Due to the high non-linearity of the road profile disturbances plus uncertainties derived from vehicle dynamics, a conventional Skyhook controller is not deemed enough for the vehicle system to improve the performance. A major problem of the implementation of the controller is to optimize a proper parameter as this is an important element in demanding a good controller response. An advanced Firefly Algorithm (AFA) integrated with the modified skyhook (MSky) is proposed to enhance the robustness of the system and thus able to improve the vehicle ride comfort. In this paper, the controller scheme to be known as MSky-AFA was validated via MATLAB simulation environment. A different optimizer based on the original firefly algorithm (FA) is also studied in order to compute the parameter of the MSky controller. This control scheme to be known as MSky-FA was evaluated and compared to the proposed MSky-AFA as well as the passive suspension control. The results clearly exhibit more superior and better response of the MSky-AFA in reducing the body acceleration and displacement amplitude in comparison to the MSky-FA and passive counterparts for a sinusoidal road profile condition.


2021 ◽  
Vol 1199 (1) ◽  
pp. 012083
Author(s):  
Zbyszko Klockiewicz ◽  
Grzegorz Ślaski ◽  
Hubert Pikosz

Abstract The paper presents the method of kinematic road excitation reconstruction based on measured suspension dynamic responses and its reconstruction with use of estimated displacements of unsprung mass as a preliminary approximation of kinematic excitation and tracking control system with a PID controller that allows for faithful reconstruction of unsprung mass accelerations and, in turn, kinematic excitations. The authors performed an experimental verification of the method with use of one axle car trailer and measurements of road profile and acquiring signals of suspension dynamics responses. The signal processing methodology and obtained results are presented for random and determined excitations. The necessary requirements to use the method effectively were defined and its limitations were listed.


2021 ◽  
Vol 4 (1) ◽  
pp. 119-128
Author(s):  
Mehmet Akif Koç

In this study 3-DOF quarter car model with the three bumps on the rigid road, the assumption has been modeled with the non-random irregularity. To reduce the excessive vibrations occurred on the vehicle body, an active suspension system with the linear actuator has been considered. Moreover, to control this actuator, an adaptive neuro-fuzzy algorithm is designed. The training and testing data of the ANFIS has been obtained from Proportional Integral Derivative (PID) control algorithm. After that the successful training process, a testing procedure has been applied to ANFIS for the measure of the adaptive neuro-fuzzy system with data that are not considered in the training process. Then, the performance of the ANFIS is compared by the PID algorithm and passive suspension system in terms of vehicle body vertical acceleration, vehicle body vertical displacement, and control force. The road model used in the study has been modeled according to non-random road profile mathematical formulation considering periodical and discrete road profile cases. In this formulation, one can easily determine the height, width, and number of the road defect with the series mathematical formulation. Consequently, with the results obtained from the presented study, it is proven that ANFIS is a very effective controlling algorithm to suppress vibration occurred on the vehicle body due to vehicle road interaction. Furthermore, the performance of the ANFIS has been tested with different parameters, for example, different number membership functions (MF), which used the fuzzification of the input parameters.


2021 ◽  
Author(s):  
Angelo Domenico Vella ◽  
Antonio Tota ◽  
Alessandro Vigliani

Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2120
Author(s):  
Olivier Sename

This paper presents a detailed literature review about Linear Parameter Varying (LPV) approaches applied to vehicle suspension systems. Indeed many works have been devoted to vehicle (active and semi-active) suspension in the past 20 years, because this subsystem in the only one affecting passenger comfort and road holding. Moreover several studies have also been concerned with global vehicle dynamic control using the suspension systems in collaboration with other subsystems (steering, braking …). On the other hand, the LPV approaches have proved to be very efficient to control non linear systems as well as to provide some kind of adaptive control. Naturally many LPV methods have been developed for suspension systems in order to take into account the nonlinear characteristics of the dampers, to adapt the suspension performance to the passenger request or to the road profile, to make the suspension systems collaborate with other subsystems, or to provide a fault tolerant control in case of damper loss of efficiency. This survey paper will make a deep analysis about the recent studies dedicated to vehicle suspension systems aiming at providing a better insight on the type of LPV methods that have been considered.


2021 ◽  
pp. 144-151
Author(s):  
Maroua Haddar ◽  
Fathi Djmal ◽  
Riadh Chaari ◽  
S. Caglar Baslamisli ◽  
Fakher Chaari ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Giovani Gaiardo Fossati ◽  
Letícia Fleck Fadel Miguel ◽  
Walter Jesus Paucar Casas

PurposeThis study aims to propose a complete and powerful methodology that allows the optimization of the passive suspension system of vehicles, which simultaneously takes comfort and safety into account and provides a set of optimal solutions through a Pareto-optimal front, in a low computational time.Design/methodology/approachUnlike papers that consider simple vehicle models (quarter vehicle model or half car model) and/or simplified road profiles (harmonic excitation, for example) and/or perform a single-objective optimization and/or execute the dynamic analysis in the time domain, this paper presents an effective and fast methodology for the multi-objective optimization of the suspension system of a full-car model (including the driver seat) traveling on an irregular road profile, whose dynamic response is determined in the frequency domain, considerably reducing computational time.FindingsThe results showed that there was a reduction of 28% in the driver seat vertical acceleration weighted root mean square (RMS) value of the proposed model, which is directly related to comfort, and, simultaneously, an improvement or constancy concerning safety, with low computational cost. Hence, the proposed methodology can be indicated as a successful tool for the optimal design of the suspension systems, considering, simultaneously, comfort and safety.Originality/valueDespite the extensive literature on optimizing vehicle passive suspension systems, papers combining multi-objective optimization presenting a Pareto-optimal front as a set of optimal results, a full-vehicle model (including the driver seat), an irregular road profile and the determination of the dynamic response in the frequency domain are not found.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1149
Author(s):  
Aurimas Čerškus ◽  
Tadas Lenkutis ◽  
Nikolaj Šešok ◽  
Andrius Dzedzickis ◽  
Darius Viržonis ◽  
...  

Concept of symmetry covers physical link between road profile form, vehicle dynamic characteristics, and speed conjunction. Symmetry frame between these items is asymmetric itself and has no direct expression, but it affects a vibration level on the vehicle and driving comfort. Usually, we can change only the vehicle’s speed to achieve desired vibrations level of the driver and passengers. Recently, vehicle dynamic characteristics can be changed depending on its damping system structure, but these solutions are limited by construction and control possibilities and evidently represented by symmetric dependency between road input and the resulting acceleration of the vehicle. The main limitation of this process is to have a reliable value of the existing road profile that is mainly defined by road category but unpredictable for each road distance. Functional road profile calculations are provided in this article, where power spectral density (further-PSD) and waviness of the road play the main role in delineating road profile parameters. Furthermore, the transfer function system was created using full car dynamic model analysis. Values on vehicle suspension’s effects on acceleration were obtained from vehicle speed and road roughness. Acceleration values and transfer function were used to calculate PSD value quickly and practically. This calculated result can be formed as a control value to the vehicle damping control. In addition, the provided methodology became useful to determine road quality for adjustment of vehicle suspension parameters and set safe driving characteristics, which became part of driver assistant systems or autonomous driving mode.


2021 ◽  
Vol 11 (12) ◽  
pp. 5507
Author(s):  
Andrei-Cristian Pridie ◽  
Csaba Antonya

When it comes to racing applications, the primary engineering goal is to increase the performance envelope of the vehicle for a given set of tires. To achieve this goal, it is necessary to maximize the normal loads on the wheels while at the same time minimizing the tire load variation. The purpose of this paper is to present a mathematical model for a Formula Student car in order to study if performance gains are achieved by replacing the traditional passive suspension with a hydraulically interconnected suspension system. To have a complete picture of the advantages and disadvantages of each system, two vibrating models with 7 degrees of freedom were created in order to simulate the motion response of a Formula Student car to realistic excitations. Two particular interpretations of the results were chosen as important performance indicators. The first one is given by the pitch stability of the chassis relative to the road, which can be linked with a decrease in downforce load variation. The second one is the ability of the wheel to follow the road profile as closely as possible, which can be directly correlated with the amount of mechanical grip of the vehicle. The simulation results indicate that the hydraulically interconnected suspension system offers better results for both proposed cases but at the expense of the roll stability of the vehicle.


Sign in / Sign up

Export Citation Format

Share Document