Study of Cloud Security in Hyper-scalers

Author(s):  
Megha Panjwani ◽  
Suman De
Keyword(s):  
Author(s):  
Tiejun Jia ◽  
Ximing Xiao ◽  
Fujie Zhang ◽  
Zhaohong Feng

2019 ◽  
Vol 7 (2) ◽  
pp. 342-348
Author(s):  
Vaishali Singh ◽  
Kavita Bhatia ◽  
S. K. Pandey

2018 ◽  
Vol 6 (5) ◽  
pp. 473-478
Author(s):  
K. K. Chauhan ◽  
◽  
◽  
A. K. S. Sanger

2014 ◽  
Vol 1 (1) ◽  
pp. 1-5
Author(s):  
Poonam Rawat ◽  
◽  
Neha Rawat ◽  
Shikha Singh ◽  
Awantika . ◽  
...  

Author(s):  
Jin Han ◽  
Jing Zhan ◽  
Xiaoqing Xia ◽  
Xue Fan

Background: Currently, Cloud Service Provider (CSP) or third party usually proposes principles and methods for cloud security risk evaluation, while cloud users have no choice but accept them. However, since cloud users and cloud service providers have conflicts of interests, cloud users may not trust the results of security evaluation performed by the CSP. Also, different cloud users may have different security risk preferences, which makes it difficult for third party to consider all users' needs during evaluation. In addition, current security evaluation indexes for cloud are too impractical to test (e.g., indexes like interoperability, transparency, portability are not easy to be evaluated). Methods: To solve the above problems, this paper proposes a practical cloud security risk evaluation method of decision-making based on conflicting roles by using the Analytic Hierarchy Process (AHP) with Aggregation of Individual priorities (AIP). Results: Not only can our method bring forward a new index system based on risk source for cloud security and corresponding practical testing methods, but also can obtain the evaluation result with the risk preferences of conflicting roles, namely CSP and cloud users, which can lay a foundation for improving mutual trusts between the CSP and cloud users. The experiments show that the method can effectively assess the security risk of cloud platforms and in the case where the number of clouds increased by 100% and 200%, the evaluation time using our methodology increased by only by 12% and 30%. Conclusion: Our method can achieve consistent decision based on conflicting roles, high scalability and practicability for cloud security risk evaluation.


Author(s):  
D. Sowmya ◽  
S. Sivasankaran

In the cloud environment, it is difficult to provide security to the monolithic collection of data as it is easily accessed by breaking the algorithms which are based on mathematical computations and on the other hand, it takes much time for uploading and downloading the data. This paper proposes the concept of implementing quantum teleportation i.e., telecommunication + transportation in the cloud environment for the enhancement of cloud security and also to improve speed of data transfer through the quantum repeaters. This technological idea is extracted from the law of quantum physics where the particles say photons can be entangled and encoded to be teleported over large distances. As the transfer of photons called qubits allowed to travel through the optical fiber, it must be polarized and encoded with QKD (Quantum Key Distribution) for the security purpose. Then, for the enhancement of the data transfer speed, qubits are used in which the state of quantum bits can be encoded as 0 and 1 concurrently using the Shors algorithm. Then, the Quantum parallelism will help qubits to travel as fast as possible to reach the destination at a single communication channel which cannot be eavesdropped at any point because, it prevents from creating copies of transmitted quantum key due to the implementation of no-cloning theorem so that the communication parties can only receive the intended data other than the intruders.


Author(s):  
Infall Syafalni ◽  
Hamdani Fadhli ◽  
Wuri Utami ◽  
Gede Satya Adi Dharma ◽  
Rahmat Mulyawan ◽  
...  

2021 ◽  
Vol 1964 (4) ◽  
pp. 042061
Author(s):  
V Sureshkumar ◽  
B Baranidharan

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 20717-20735
Author(s):  
Ali Bou Nassif ◽  
Manar Abu Talib ◽  
Qassim Nasir ◽  
Halah Albadani ◽  
Fatima Mohamad Dakalbab

2021 ◽  
Vol 54 (4) ◽  
pp. 1-36
Author(s):  
Fei Chen ◽  
Duming Luo ◽  
Tao Xiang ◽  
Ping Chen ◽  
Junfeng Fan ◽  
...  

Recent years have seen the rapid development and integration of the Internet of Things (IoT) and cloud computing. The market is providing various consumer-oriented smart IoT devices; the mainstream cloud service providers are building their software stacks to support IoT services. With this emerging trend even growing, the security of such smart IoT cloud systems has drawn much research attention in recent years. To better understand the emerging consumer-oriented smart IoT cloud systems for practical engineers and new researchers, this article presents a review of the most recent research efforts on existing, real, already deployed consumer-oriented IoT cloud applications in the past five years using typical case studies. Specifically, we first present a general model for the IoT cloud ecosystem. Then, using the model, we review and summarize recent, representative research works on emerging smart IoT cloud system security using 10 detailed case studies, with the aim that the case studies together provide insights into the insecurity of current emerging IoT cloud systems. We further present a systematic approach to conduct a security analysis for IoT cloud systems. Based on the proposed security analysis approach, we review and suggest potential security risk mitigation methods to protect IoT cloud systems. We also discuss future research challenges for the IoT cloud security area.


Sign in / Sign up

Export Citation Format

Share Document