Recent Increase in Rain Attenuation Statistics of Ku-Band Satellite Communications Links

Author(s):  
Yasuyuki Maekawa
1992 ◽  
Author(s):  
R. SORBELLO ◽  
A. ZAGHLOUL ◽  
R. GUPTA ◽  
B. GELLER ◽  
F.T. ASSAL

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Piero Angeletti ◽  
Marco Lisi

Rain attenuation at Ka-band is a severe phenomenon that drastically impairs satellite communications at these frequencies. Several adaptive compensation techniques have been elaborated to counteract its effects and most often applied one at a time. The present paper proposes the contemporary exploitation of different techniques in a combined approach. Such an integrated approach is thoroughly analyzed in a simplified scenario and will be shown to achieve a very effective solution, making the Ka-band spectrum fully available for broadband satellite applications and network-centric systems.


Author(s):  
Islam Md. Rafiqul ◽  
Ali Kadhim Lwas ◽  
Mohamed Hadi Habaebi ◽  
Md Moktarul Alam ◽  
Jalel Chebil ◽  
...  

<p><span>This paper reports a study on mitigation of propagation impairments on Earth–space communication links. The study uses time diversity as a technique for mitigating rain propagation impairment in order to rectify rain fade. Rain attenuation time series along earth-to-satellite link were measured for two years period at 12.255 GHz in Malaysia. The time diversity technique was applied on measured rain fade to investigate the level of possible improvement in system. Time diversity gain from measured one-minute rain attenuation for two years period was estimated and significant improvement was observed with different delays of time. These findings will be utilized as a useful tool for link designers to apply time diversity as a rain fade mitigation technique in Earth-satellite communications systems.</span></p>


2021 ◽  
Vol 36 (7) ◽  
pp. 852-857
Author(s):  
Yongliang Zhang ◽  
Xiuzhu Lv ◽  
Jiaxuan Han ◽  
Shuai Bao ◽  
Yao Cai ◽  
...  

In this paper, a highly efficient dual-band transmitarray antenna using cross and square rings elements is presented for X and Ku bands. The dual-band transmitarray is designed for downlink/uplink frequencies of Ku band satellite communications. The transmitarray element consists of four metal patches and two dielectric substrates. The metal patch is printed on both sides of the substrate. By optimizing the parameters, the transmitarray element can achieve a transmission phase coverage greater than 360° and work independently in both frequency bands. Then, a method to select the size of the element is proposed, so that all the elements in the array can realize the transmission phase of the two frequencies as much as possible. A 201-elements transmitarray antenna is fabricated and measured and the band ratio of the antenna is 1.13. The measured maximum gain at 11.5 GHz is 22.4 dB, corresponding to the aperture efficiency is 52.7%. The measured maximum gain at 13 GHz is 24.2 dB, corresponding to the aperture efficiency is 62.4%. The 1-dB gain bandwidths are 9.7% (10.8-11.9 GHz) at X band and 9% (12.6-13.8 GHz) at Ku band.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 488
Author(s):  
Alfredo Catalani ◽  
Giovanni Toso ◽  
Piero Angeletti ◽  
Mario Albertini ◽  
Pasquale Russo

In the paper the development of a fully electronic transmit-receive phased-array antenna system in Ku-band for aircraft communications via satellite is presented. Particular emphasis has been placed in the improvement of the following key elements: a dual-polarization self-diplexing radiating element, a transmit/receive active module with full polarization agility based on a digital vector modulator and a SiGe multinode MMIC. The optimized antenna elements enable a significant improvement towards the realization of a future affordable commercial product for satellite communications.


Sign in / Sign up

Export Citation Format

Share Document