japan meteorological agency
Recently Published Documents


TOTAL DOCUMENTS

309
(FIVE YEARS 110)

H-INDEX

28
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Motomu Suzuki ◽  
Koukichi Koukichi ◽  
Taro Mikami ◽  
Yuichiro Yabuki ◽  
Saori Asano ◽  
...  

Abstract Since cellulitis is one of the most important factors for the prognosis of lymphedema, the prevention and prediction of cellulitis are considered to be critical in controlling lymphedema. We hypothesized that patients with lymphedema might show meteoropathy, as abdominal aortic aneurysm ruptures are considered to be influenced by climatic conditions, and the lymphatic system is one of the circulation systems. Thus, we aimed to determine if the onset of cellulitis in limbs affected by lymphedema is related to climatic conditions. We reviewed the clinical records of patients with lymphedema admitted for cellulitis at our institute between January 2007 and December 2017. We identified 40 patients, 25 of whom lived in the same area. We examined the association between the number of patient admissions according to season and meteorological data obtained from the Japan Meteorological Agency database. Thirteen of 25 patients were admitted in summer, whereas only one patient was admitted in winter. Both higher temperature and lower atmospheric pressure around the day of admission were associated with the occurrence of cellulitis. Lymphedema may be regarded as a meteoropathic disease, as climatic conditions were shown to be associated with cellulitis in limbs affected by lymphedema.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Ryo Kurihara ◽  
Aitaro Kato ◽  
Sumito Kurata ◽  
Hiromichi Nagao

AbstractThe matched filter technique is often used to detect microearthquakes such as deep low-frequency (DLF) earthquakes. It compares correlation coefficients (CC) between waveforms of template earthquakes and the observed data. Conventionally, the sum of CC at multiple seismic stations is used as an index to detect the DLF earthquakes. A major disadvantage of the conventional method is drastically reduced detection accuracy when there are too few seismic stations. The new matched filter method proposed in this study can accurately detect microearthquakes using only a single station. It adopts mutual information (MI) in addition to CC to measure the similarity between the template and target waveforms. The method uses the product of MI and CC (MICC) as an index to detect DLF earthquakes. This index shows a distinct peak corresponding to an earthquake signal in a synthetic data set consisting of artificial noise and the waveform of a DLF earthquake. Application of this single-station method to field observations of Kirishima volcano, one of the most active volcanoes in Japan, detected a total of 354 events from the data in December 2010, whereas the catalog of the Japan Meteorological Agency shows only two. Of the detected events, 314 (89%) are likely DLF earthquakes and other events may be false detections. Most of the false detections correspond to surface-wave arrivals from teleseismic events. The catalog of DLF earthquakes constructed here shows similar temporal behavior to that found by the conventional matched filter method using the sum of the CC of the six stations near the volcano. These results suggest that the proposed method can greatly contribute to the accurate cataloging of DLF earthquakes using only a single seismic station. Graphical Abstract


2021 ◽  
Vol 2145 (1) ◽  
pp. 012046
Author(s):  
Kulaya Keawsang-In ◽  
Sujittra Ratjiranukool ◽  
Pakpoom Ratjiranukool

Abstract To reduce the tropical cyclone impact of lives and economics, the precise forecast of the event is required. The typhoon Damrey (2017), which caused ravaging of the strong wind, heavy precipitation, flash flood and storm surge over the Indochina region, was simulated by Weather Research and forecasting (WRF) model. The simulated duration was 8 days starting from 31 October 2017 00 00 UTC to 8 November 2017 00 00 UTC. The NCEP 6-hour global FNL (final analysis) data at 1-degree resolution is provided for initial condition. The WRF model was run in a single domain of 20 km horizontal resolution bounded 0 to 20 N and 96°E to 124°E. The different physics schemes, which are the microphysics schemes, the planetary boundary layer schemes and cumulus parameterization schemes, were emphasized to examine the suitable schemes in tropical cyclone simulation over the Indochina region. To evaluate the reliability of the simulation of tropical cyclone, the track-position is correlated with the Japan Meteorological Agency (JMA) observation. The results show that the typhoon simulation forced by Belts-Millers-Janjic cumulus, WSM6 microphysics was suitable for simulating of typhoon Damrey.


MAUSAM ◽  
2021 ◽  
Vol 61 (1) ◽  
pp. 1-10
Author(s):  
S. D. KOTAL ◽  
S. K. ROY BHOWMIK ◽  
B. MUKHOPADHYAY

A four-step statistical-dynamical approach is applied for real time forecasting of the Bay of Bengal cyclonic storm “RASHMI” of October 2008 which made landfall near Khepupara (Bangladesh) around 2200 UTC of 26 October 2008. The four-step approach consists of (a) Analysis of Genesis Potential Parameter (GPP), (b) Track prediction, (c) Intensity Prediction by Statistical Cyclone Intensity Prediction (SCIP) model and (d) Prediction of decaying intensity after the landfall. The results show that the analysis of Genesis Potential Parameter (GPP) at early stages of development strongly indicated that the cyclone “RASHMI” had enough potential to reach its cyclone stage.  The 48 hours landfall forecast position error based on 0000 UTC on 25 October shows that the error varies from around 10 km to 95 km and landfall time error varies from 12 hours early to 23 hours delay by different numerical models (NWP). The consensus forecast (ensemble) based on these NWP models shows that landfall forecast position error is around 10 km and landfall time error is around 2 hours delay. The updated 24 hours forecast based on 0000 UTC of 26 October shows improvement in the forecast. The model predicted landfall position error varies from around 10 km to 55 km with landfall time 6 hours early to 3 hours delay. The Multiple Model Ensemble (MME) forecast shows that the landfall forecast position is close to observed landfall point and the landfall time is early by 2 hours. The JMA (Japan Meteorological Agency) and ensemble forecasts are found to be consistent both in terms of 24-hourly forecasts position, landfall point and landfall time. The 12–hourly intensity prediction up to 24 hours forecasts based on 0000 UTC on 26 October show that the model (SCIP) could pick up the intensification of the cyclone. The model forecasts till the landfall point show that there is an underestimation of intensity by 2 knots and 8 knots at 12 hour and 24 hour forecasts respectively. The 6-hourly decaying intensity forecast after the landfall shows an overestimation of 6 knots and 10 knots at 6-hour and 12-hour forecasts respectively. The approach provided useful guidance to the forecasters for real time forecasting of the cyclone.


2021 ◽  
Author(s):  
Yuma Kawakami ◽  
Atsushi Kojima ◽  
Kiyoshi Murakami ◽  
Toshiya Nakano ◽  
Shusaku Sugimoto

AbstractTemporal variations of net Kuroshio transport are examined for 1972–2018 based on a repeated hydrographic section along 137°E, which is maintained by the Japan Meteorological Agency. The net Kuroshio transport obtained by integration of geostrophic current velocity relative to 1000 dbar depth fluctuates on inter-annual and decadal timescales. The predominant timescale of the net Kuroshio transport changes with time; the inter-annual variation is pronounced in 1972–1990 and 2000–2018, and the decadal variation is detected only before 2000. We find that a winter wind stress curl variation in the central North Pacific which reflects meridional movements of the Aleutian Low and intensity fluctuations of the North Pacific subtropical high on an inter-annual timescale and intensity fluctuations of the Aleutian Low on a decadal timescale, causes the net Kuroshio transport variation. In addition to the inter-annual and decadal variations, we further pointed out a bi-decadal-scale variation of the net Kuroshio transport and its possible link to the Aleutian Low intensity fluctuation. Moreover, our results indicate that during large net Kuroshio transport, sea surface temperature around the Kuroshio and Kuroshio Extension region tends to increase, resulting in vigorous upward sensible and latent heat release.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Gugi Ganefianto ◽  
Hisashi Nakahara ◽  
Takeshi Nishimura

AbstractSmall-scale seismic velocity heterogeneity has been studied through the calculation of peak amplitude ratio as a means to quantify the strength of seismic wave scattering at volcanoes in Japan. This ratio is defined as the ratio of the maximum (peak) P wave energy in the transverse component seismogram envelope over that of the three-component sum seismogram envelope (transverse + radial + vertical). According to the previous study using Japan’s Hi-net seismometer network, the peak ratio is observed to be larger near the (active) quaternary volcanoes. However, these Hi-net stations are not positioned on the volcanoes themselves. This study systematically examines the peak ratios at 47 active volcanoes across Japan, using seismometers operated by the Japan Meteorological Agency (JMA). Analyses were performed at four frequency bands: 0.5–1, 1–2, 2–4, and 4–8 Hz. We found that the JMA stations yield higher peak ratios than the Hi-net stations. Their differences are statistically significant at the 99.9% confidence level in all frequency bands. We also examined the differences between the ground surface and borehole stations of the JMA network. The former shows larger peak ratios, and for most frequency bands, the differences are also statistically significant at the 99.9% confidence level. This suggests an intensification of small-scale medium heterogeneities especially at shallow depths at active volcanoes, and that scattering might have been enhanced at the very shallow parts. Graphical Abstract


2021 ◽  
Vol 893 (1) ◽  
pp. 012047
Author(s):  
R Rahmat ◽  
A M Setiawan ◽  
Supari

Abstract Indonesian climate is strongly affected by El Niño-Southern Oscillation (ENSO) as one of climate-driven factor. ENSO prediction during the upcoming months or year is crucial for the government in order to design the further strategic policy. Besides producing its own ENSO prediction, BMKG also regularly releases the status and ENSO prediction collected from other climate centers, such as Japan Meteorological Agency (JMA) and National Oceanic and Atmospheric Administration (NOAA). However, the skill of these products is not well known yet. The aim of this study is to conduct a simple assessment on the skill of JMA Ensemble Prediction System (EPS) and NOAA Climate Forecast System version 2 (CFSv2) ENSO prediction using World Meteorological Organization (WMO) Standard Verification System for Long Range Forecast (SVS-LRF) method. Both ENSO prediction results also compared each other using Student's t-test. The ENSO predictions data were obtained from the ENSO JMA and ENSO NCEP forecast archive files, while observed Nino 3.4 were calculated from Centennial in situ Observation-Based Estimates (COBE) Sea Surface Temperature Anomaly (SSTA). Both ENSO prediction issued by JMA and NCEP has a good skill on 1 to 3 months lead time, indicated by high correlation coefficient and positive value of Mean Square Skill Score (MSSS). However, the skill of both skills significantly reduced for May-August target month. Further careful interpretation is needed for ENSO prediction issued on this mentioned period.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yuki Kodera ◽  
Naoki Hayashimoto ◽  
Koji Tamaribuchi ◽  
Keishi Noguchi ◽  
Ken Moriwaki ◽  
...  

In Japan, the nationwide earthquake early warning (EEW) system has been being operated by the Japan Meteorological Agency (JMA) since 2007, disseminating information on imminent strong ground motion to the general public and advanced technical users. In the beginning of the operation, the system ran based mainly on standard source-based algorithms with a point-source location estimate and ground motion prediction equation. The point-source algorithms successfully provided ground motion predictions with high accuracy during the initial operation; however, the 2011 Mw9.0 Tohoku-Oki earthquake and the subsequent intense aftershock and triggered earthquake activities underscored the weaknesses of the source-based approach. In this paper, we summarize major system developments after the Tohoku-Oki event to overcome the limits of the standard point-source algorithms and to enhance the EEW performance further. In addition, we evaluate how the system performance was influenced by the updates. One of significant improvements in the JMA EEW system was the implementation of two new ground motion prediction methods: the integrated particle filter (IPF) and propagation of local undamped motion (PLUM) algorithms. IPF is a robust point-source algorithm based on the Bayesian inference, and PLUM is a wavefield-based algorithm that predicts ground motions directly from observed shakings. Another notable update was the incorporation of new observation facilities including S-net, a large-scale ocean bottom seismometer network deployed along the Japan and Kuril trenches. The prediction accuracy and warning issuance performance analysis for the updated JMA EEW system showed that IPF improved the source-based ground motion prediction accuracy and reduced the risk of issuing overpredicted warnings. PLUM made the system less likely to underpredict strong ground motions and improved the warning issuance timeliness. The detection time analysis for the S-net incorporation suggested that S-net enabled the system to issue the first EEW report earlier than before the S-net incorporation for earthquakes around the Japan and Kuril trenches. Those findings indicate that the JMA EEW system has made substantial progress both on software and hardware aspects over the 10 years after the Tohoku-Oki earthquake.


2021 ◽  
Author(s):  
Hong Peng ◽  
James Jiro Mori

Abstract We use the Japan Meteorological Agency (JMA) earthquake catalogue from 2001 to 2021 to investigate the spatiotemporal distribution of foreshocks for shallow mainshocks (Mj3.0–7.2) that are located onshore of Japan. We find clear peaks for the earlier small earthquakes within 10 days and 3 km prior to the mainshocks, which are considered as our definition of foreshocks. After removing the aftershocks, earthquake swarms and possible earthquakes triggered by the 2011 Mw9.0 Tohoku-oki earthquake, we find that for the 2,066 independent earthquakes, 783 (37.9%) have one or more foreshocks. There is a decreasing trend of foreshock occurrence with mainshock depth. Also, normal faulting earthquakes have higher foreshock occurrence than reverse faulting earthquakes. We calculate the rates of foreshock occurrence as a function of the magnitudes of foreshocks and mainshocks, and we have found no clear trend between the magnitudes of foreshocks and mainshocks.


Sign in / Sign up

Export Citation Format

Share Document