An end-to-end workflow for assessing sea surface temperature, salinity and water level predicted by coastal ocean models

Author(s):  
Vembu Subramanian ◽  
Richard Signell ◽  
Filipe Pires Alvarenga Fernandes ◽  
Debra Hernandez
2021 ◽  
Author(s):  
◽  
Jessica J. Orsman

<p>Li, B, Mg, Al, Mn, Cu, Zn, As, Sr, Ba and U/Ca ratios were measured by laser ablation inductively coupled plasma mass spectrometry for 11 modern Austrovenus stutchburyi clams to assess the potential of this molluscan species as a proxy for paleo-ocean temperature and environmental change. A. stutchburyi is an intertidal, infaunal, bivalve, widespread in New Zealand coastal regions and throughout the Quaternary-Pliocene sedimentary rock record. Five individuals from Ligar Bay and Estuary (South Island, New Zealand) were analysed to evaluate the variability between individuals calcifying in similar environmental conditions. A further six individuals were sampled from a range of latitudes (38˚ to 40˚) in the North Island, New Zealand to evaluate variability between individuals from different environments. A strong positive correlation between growth rate and Mg, Al, Mn, Sr, Ba and U/Ca ratios was observed, and a marked negative correlation was found between the same trace element/Ca ratios and ontogenetic age as growth rates slow during the molluscs' life. Thus, biological effects are the primary influence on trace element incorporation in A. stutchburyi. No clear seasonal variations were observed in the Mg and Sr/Ca ratio profiles through A. stutchburyi shells representing time periods of several years. Furthermore, for two shells for which chronologies could be reliably constructed, there were no significant correlations between Mg and Sr/Ca ratios and sea surface temperature. When Mg/Ca ratios were normalised to Sr/Ca ratios in order to eliminate the growth rate effect on trace element incorporation into the mollusc shells, some of the remaining variations appeared to visually correlate positively with sea surface temperature in several sections of a shell. However, a quantitative correlation did not confirm this (r² = 0.012). It is likely that neither Mg nor Sr incorporation into A. stutchburyi shell are primarily thermodynamically controlled. Several coincident Ba/Ca peaks in two of the Ligar Bay shells are most likely caused by environmental processes such as short periods of phytoplankton blooms or elevated seawater Ba/Ca from river flooding. Mn/Ca and U/Ca variations in A. stutchburyi from different coastal sites with different sediment characteristics appeared to be linked to the redox conditions prevailing at an open ocean sand-dominated environment (Ligar Bay) versus tidal mud flat environments (e.g. Miranda). Thus, while A. stutchburyi is unlikely to be a useful archive for past coastal ocean temperatures, it holds considerable promise for tracking past changes in coastal ocean productivity and river run-off, as well as sediment redox conditions.</p>


2006 ◽  
Vol 19 (23) ◽  
pp. 6069-6088 ◽  
Author(s):  
T. N. Krishnamurti ◽  
Arindam Chakraborty ◽  
Ruby Krishnamurti ◽  
William K. Dewar ◽  
Carol Anne Clayson

Abstract Improved seasonal prediction of sea surface temperature (SST) anomalies over the global oceans is the theme of this paper. Using 13 state-of-the-art coupled global atmosphere–ocean models and 13 yr of seasonal forecasts, the performance of individual models, the ensemble mean, the bias-removed ensemble mean, and the Florida State University (FSU) superensemble are compared. A total of 23 400 seasonal forecasts based on 1-month lead times were available for this study. Evaluation metrics include both deterministic and probabilistic skill measures, such as verification of anomalies based on model and observed climatology, time series of specific climate indices, standard deterministic ensemble mean scores including anomaly correlations, root-mean-square (RMS) errors, and probabilistic skill measures such as equitable threat scores for seasonal SST forecasts. This study also illustrates the Niño-3.4 SST forecast skill for the equatorial Pacific Ocean and for the dipole index for the Indian Ocean. The relative skills of total SST fields and of the SST anomalies from the 13 coupled atmosphere–ocean models are presented. Comparisons of superensemble-based seasonal forecasts with recent studies on SST anomaly forecasts are also shown. Overall it is found that the multimodel superensemble forecasts are characterized by considerable RMS error reductions and increased accuracy in the spatial distribution of SST. Superensemble SST skill also persists for El Niño and La Niña forecasts since the large comparative skill of the superensemble is retained across such years. Real-time forecasts of seasonal sea surface temperature anomalies appear to be possible.


2007 ◽  
Vol 65 (1-4) ◽  
pp. 27-40 ◽  
Author(s):  
I. Andreu-Burillo ◽  
J. Holt ◽  
R. Proctor ◽  
J.D. Annan ◽  
I.D. James ◽  
...  

2020 ◽  
Vol 12 (7) ◽  
pp. 1140
Author(s):  
Dimitrios N. Androulakis ◽  
Andrew Clive Banks ◽  
Costas Dounas ◽  
Dionissios P. Margaris

The coastal ocean is one of the most important environments on our planet, home to some of the most bio-diverse and productive ecosystems and providing key input to the livelihood of the majority of human society. It is also a highly dynamic and sensitive environment, particularly susceptible to damage from anthropogenic influences such as pollution and over-exploitation as well as the effects of climate change. These have the added potential to exacerbate other anthropogenic effects and the recent change in sea temperature can be considered as the most pervasive and severe cause of impact in coastal ecosystems worldwide. In addition to open ocean measurements, satellite observations of sea surface temperature (SST) have the potential to provide accurate synoptic coverage of this essential climate variable for the near-shore coastal ocean. However, this potential has not been fully realized, mainly because of a lack of reliable in situ validation data, and the contamination of near-shore measurements by the land. The underwater biotechnological park of Crete (UBPC) has been taking near surface temperature readings autonomously since 2014. Therefore, this study investigated the potential for this infrastructure to be used to validate SST measurements of the near-shore coastal ocean. A comparison between in situ data and Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra SST data is presented for a four year (2014–2018) in situ time series recorded from the UBPC. For matchups between in situ and satellite SST data, only nighttime in situ extrapolated to the sea surface (SSTskin) data within ±1 h from the satellite’s overpass are selected and averaged. A close correlation between the in situ data and the MODIS SST was found (squared Pearson correlation coefficient-r2 > 0.9689, mean absolute error-Δ < 0.51 both for Aqua and Terra products). Moreover, close correlation was found between the satellite data and their adjacent satellite pixel’s data further from the shore (r2 > 0.9945, Δ < 0.23 for both Aqua and Terra products, daytime and nighttime satellite SST). However, there was also a consistent positive systematic difference in the satellite against satellite mean biases indicating a thermal adjacency effect from the land (e.g., mean bias between daytime Aqua satellite SST from the UBPC cell minus the respective adjacent cell’s data is δ = 0.02). Nevertheless, if improvements are made in the in situ sensors and their calibration and uncertainty evaluation, these initial results indicate that near-shore autonomous coastal underwater temperature arrays, such as the one at UBPC, could in the future provide valuable in situ data for the validation of satellite coastal SST measurements.


2019 ◽  
Vol 145 (718) ◽  
pp. 228-242 ◽  
Author(s):  
Benedikt Strajnar ◽  
Jure Cedilnik ◽  
Anja Fettich ◽  
Matjaž Ličer ◽  
Neva Pristov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document