Variability in the coupling between sea surface temperature and wind stress in the global coastal ocean

2016 ◽  
Vol 125 ◽  
pp. 88-96 ◽  
Author(s):  
Yuntao Wang ◽  
Renato M. Castelao
2012 ◽  
Vol 42 (11) ◽  
pp. 2073-2087 ◽  
Author(s):  
Renato M. Castelao

Abstract The coupling between sea surface temperature (SST), SST gradients, and wind stress curl variability near a cape off Brazil is investigated using satellite observations and several different SST high-resolution analyses. The cape is characterized by strong SST fronts year-round, associated with upwelling and advection of warm water offshore in a western boundary current. Observations reveal a strong coupling between crosswind SST gradients and wind stress curl variability, with the predominantly negative crosswind gradients leading to negative, upwelling favorable wind stress curl anomalies. The spatial correlation between empirical orthogonal functions (EOF) of those variables is ~0.6, while the correlation between the EOF amplitude time series of the wind stress curl and crosswind SST gradients is larger than 0.7. The coupling occurs during summer and winter and is strongly modulated by variations in the wind stress directional steadiness. The intensity of the coupling is weaker than around capes on the California Current system, presumably because of higher variability in wind direction off Brazil. During periods of high wind stress directional steadiness off Cape Frio, the coupling is intensified by up to 40%–75%. Wind stress curl is also correlated with SST itself, especially in the vicinity of the cape, although not as strongly as with crosswind SST gradients. The analyses suggest that the observed wind stress curl anomalies can lead to surface cooling of as much as 1°C. If the enhanced upwelling leads to further strengthening of the upwelling front, negative wind stress curl anomalies may be intensified in a positive feedback mechanism.


2005 ◽  
Vol 133 (11) ◽  
pp. 3202-3216 ◽  
Author(s):  
T. Haack ◽  
S. D. Burk ◽  
R. M. Hodur

Abstract Monthly averages of numerical model fields are beneficial for depicting patterns in surface forcing such as sensible and latent heat fluxes, wind stress, and wind stress curl over data-sparse ocean regions. Grid resolutions less than 10 km provide the necessary mesoscale detail to characterize the impact of a complex coastline and coastal topography. In the present study a high-resolution mesoscale model is employed to reveal patterns in low-level winds, temperature, relative humidity, sea surface temperature as well as surface fluxes, over the eastern Pacific and along the U.S. west coast. Hourly output from successive 12-h forecasts are averaged to obtain monthly mean patterns from each season of 1999. The averages yield information on interactions between the ocean and the overlying atmosphere and on the influence of coastal terrain forcing in addition to their month-to-month variability. The spring to summer transition is characterized by a dramatic shift in near-surface winds, temperature, and relative humidity as offshore regions of large upward surface fluxes diminish and an alongshore coastal flux gradient forms. Embedded within this gradient, and the imprint of strong summertime topographic forcing, are small-scale fluctuations that vary in concert with local changes in sea surface temperature. Potential feedbacks between the low-level wind, sea surface temperature, and the wind stress curl are explored in the coastal regime and offshore waters. In all seasons, offshore extensions of colder coastal waters impose a marked influence on low-level conditions by locally enhancing stability and reducing the wind speed, while buoy measurements along the coast indicate that sea surface temperatures and wind speeds tend to be negatively correlated.


2001 ◽  
Vol 14 (7) ◽  
pp. 1479-1498 ◽  
Author(s):  
Dudley B. Chelton ◽  
Steven K. Esbensen ◽  
Michael G. Schlax ◽  
Nicolai Thum ◽  
Michael H. Freilich ◽  
...  

2006 ◽  
Vol 19 (11) ◽  
pp. 2451-2481 ◽  
Author(s):  
Clara Deser ◽  
Antonietta Capotondi ◽  
R. Saravanan ◽  
Adam S. Phillips

Abstract Simulations of the El Niño–Southern Oscillation (ENSO) phenomenon and tropical Atlantic climate variability in the newest version of the Community Climate System Model [version 3 (CCSM3)] are examined in comparison with observations and previous versions of the model. The analyses are based upon multicentury control integrations of CCSM3 at two different horizontal resolutions (T42 and T85) under present-day CO2 concentrations. Complementary uncoupled integrations with the atmosphere and ocean component models forced by observed time-varying boundary conditions allow an assessment of the impact of air–sea coupling upon the simulated characteristics of ENSO and tropical Atlantic variability. The amplitude and zonal extent of equatorial Pacific sea surface temperature variability associated with ENSO is well simulated in CCSM3 at both resolutions and represents an improvement relative to previous versions of the model. However, the period of ENSO remains too short (2–2.5 yr in CCSM3 compared to 2.5–8 yr in observations), and the sea surface temperature, wind stress, precipitation, and thermocline depth responses are too narrowly confined about the equator. The latter shortcoming is partially overcome in the atmosphere-only and ocean-only simulations, indicating that coupling between the two model components is a contributing cause. The relationships among sea surface temperature, thermocline depth, and zonal wind stress anomalies are consistent with the delayed/recharge oscillator paradigms for ENSO. We speculate that the overly narrow meridional scale of CCSM3's ENSO simulation may contribute to its excessively high frequency. The amplitude and spatial pattern of the extratropical atmospheric circulation response to ENSO is generally well simulated in the T85 version of CCSM3, with realistic impacts upon surface air temperature and precipitation; the simulation is not as good at T42. CCSM3's simulation of interannual climate variability in the tropical Atlantic sector, including variability intrinsic to the basin and that associated with the remote influence of ENSO, exhibits similarities and differences with observations. Specifically, the observed counterpart of El Niño in the equatorial Atlantic is absent from the coupled model at both horizontal resolutions (as it was in earlier versions of the coupled model), but there are realistic (although weaker than observed) SST anomalies in the northern and southern tropical Atlantic that affect the position of the local intertropical convergence zone, and the remote influence of ENSO is similar in strength to observations, although the spatial pattern is somewhat different.


2021 ◽  
Author(s):  
◽  
Jessica J. Orsman

<p>Li, B, Mg, Al, Mn, Cu, Zn, As, Sr, Ba and U/Ca ratios were measured by laser ablation inductively coupled plasma mass spectrometry for 11 modern Austrovenus stutchburyi clams to assess the potential of this molluscan species as a proxy for paleo-ocean temperature and environmental change. A. stutchburyi is an intertidal, infaunal, bivalve, widespread in New Zealand coastal regions and throughout the Quaternary-Pliocene sedimentary rock record. Five individuals from Ligar Bay and Estuary (South Island, New Zealand) were analysed to evaluate the variability between individuals calcifying in similar environmental conditions. A further six individuals were sampled from a range of latitudes (38˚ to 40˚) in the North Island, New Zealand to evaluate variability between individuals from different environments. A strong positive correlation between growth rate and Mg, Al, Mn, Sr, Ba and U/Ca ratios was observed, and a marked negative correlation was found between the same trace element/Ca ratios and ontogenetic age as growth rates slow during the molluscs' life. Thus, biological effects are the primary influence on trace element incorporation in A. stutchburyi. No clear seasonal variations were observed in the Mg and Sr/Ca ratio profiles through A. stutchburyi shells representing time periods of several years. Furthermore, for two shells for which chronologies could be reliably constructed, there were no significant correlations between Mg and Sr/Ca ratios and sea surface temperature. When Mg/Ca ratios were normalised to Sr/Ca ratios in order to eliminate the growth rate effect on trace element incorporation into the mollusc shells, some of the remaining variations appeared to visually correlate positively with sea surface temperature in several sections of a shell. However, a quantitative correlation did not confirm this (r² = 0.012). It is likely that neither Mg nor Sr incorporation into A. stutchburyi shell are primarily thermodynamically controlled. Several coincident Ba/Ca peaks in two of the Ligar Bay shells are most likely caused by environmental processes such as short periods of phytoplankton blooms or elevated seawater Ba/Ca from river flooding. Mn/Ca and U/Ca variations in A. stutchburyi from different coastal sites with different sediment characteristics appeared to be linked to the redox conditions prevailing at an open ocean sand-dominated environment (Ligar Bay) versus tidal mud flat environments (e.g. Miranda). Thus, while A. stutchburyi is unlikely to be a useful archive for past coastal ocean temperatures, it holds considerable promise for tracking past changes in coastal ocean productivity and river run-off, as well as sediment redox conditions.</p>


Sign in / Sign up

Export Citation Format

Share Document