Value Proposition of High Capacity and Flexible Line Interfaces in Next-Generation Transport Networks

Author(s):  
Joao Pedro ◽  
Joao Santos ◽  
Nelson Costa
2021 ◽  
Vol 19 (1) ◽  
pp. 432-441
Author(s):  
Pawel Jeżowski ◽  
Olivier Crosnier ◽  
Thierry Brousse

Abstract Energy storage is an integral part of the modern world. One of the newest and most interesting concepts is the internal hybridization achieved in metal-ion capacitors. In this study, for the first time we used sodium borohydride (NaBH4) as a sacrificial material for the preparation of next-generation sodium-ion capacitors (NICs). NaBH4 is a material with large irreversible capacity of ca. 700 mA h g−1 at very low extraction potential close to 2.4 vs Na+/Na0. An assembled NIC cell with the composite-positive electrode (activated carbon/NaBH4) and hard carbon as the negative one operates in the voltage range from 2.2 to 3.8 V for 5,000 cycles and retains 92% of its initial capacitance. The presented NIC has good efficiency >98% and energy density of ca. 18 W h kg−1 at power 2 kW kg−1 which is more than the energy (7 W h kg−1 at 2 kW kg−1) of an electrical double-layer capacitor (EDLC) operating at voltage 2.7 V with the equivalent components as in NIC. Tin phosphide (Sn4P3) as a negative electrode allowed the reaching of higher values of the specific energy density 33 W h kg−1 (ca. four times higher than EDLC) at the power density of 2 kW kg−1, with only 1% of capacity loss upon 5,000 cycles and efficiency >99%.


2019 ◽  
Vol 7 (2) ◽  
pp. 520-530 ◽  
Author(s):  
Qiulong Li ◽  
Qichong Zhang ◽  
Chenglong Liu ◽  
Juan Sun ◽  
Jiabin Guo ◽  
...  

The fiber-shaped Ni–Fe battery takes advantage of high capacity of hierarchical CoP@Ni(OH)2 NWAs/CNTF core–shell heterostructure and spindle-like α-Fe2O3/CNTF electrodes to yield outstanding electrochemical performance, demonstrating great potential for next-generation portable wearable energy storage devices.


2016 ◽  
Vol 4 (47) ◽  
pp. 18223-18239 ◽  
Author(s):  
Miriam Keppeler ◽  
Nan Shen ◽  
Shubha Nageswaran ◽  
Madhavi Srinivasan

Review of the research progress in α-Fe2O3/carbon nanocomposites with superior electrochemical performance as promising alternatives to graphite anodes in LIBs.


2017 ◽  
Vol 5 (42) ◽  
pp. 22224-22233 ◽  
Author(s):  
Takuya Harada ◽  
T. Alan Hatton

A lithium-borate oxide, Li3BO3, is proposed as a next generation high capacity CO2 adsorbent operative over the intermediate temperature range of 500 to 650 °C.


Author(s):  
Calvin C.K. Chan

Wavelength division multiplexed passive optical network has emerged as a promising solution to support a robust and large-scale next generation optical access network. It offers high-capacity data delivery and flexible bandwidth provisioning to all subscribers, so as to meet the ever-increasing bandwidth requirements as well as the quality of service requirements of the next generation broadband access networks. The maturity and reduced cost of the WDM components available in the market are also among the major driving forces to enhance the feasibility and practicality of commercial deployment. In this chapter, the author will provide a comprehensive discussion on the basic principles and network architectures for WDM-PONs, as well as their various enabling technologies. Different feasible approaches to support the two-way transmission will be discussed. It is believed that WDM-PON is an attractive solution to realize fiber-to-the-home (FTTH) applications.


Sign in / Sign up

Export Citation Format

Share Document