scholarly journals The Main Cluster Node Formation in Wireless Sensory Networks

2020 ◽  
pp. 34-41
Author(s):  
Olexander Belej

In wireless sensor networks, the clustering method is often used to transmit information, which is one of the most energy efficient approaches. Since the master cluster node interacts with other nodes in the network, a node with a high residual energy is selected to perform its functions. The technology of selecting the main node based on fuzzy logic, which involves the use of a number of input parameters, the effect of which is demonstrated in the article, is proposed.

Author(s):  
Azamuddin Abdul Rahman ◽  
Mohd Nizam Mohmad Kahar ◽  
Wan Isni Sofiah Wan Din

<span>Wireless Sensor Networks (WSNs) are defined as networks of nodes that work in a cooperative way in order to sense and control the surrounding environment. Several WSNs algorithms have been proposed by utilizing the Fuzzy Logic technique to select the cluster heads (CHs). Each technique employs a different combination of input parameters such as nodes density, communication cost, and residual energy. CHs determination is critical towards this goal, whereas the combination of input parameters is expected to play an important role. Nevertheless, the received signal strength (RSSI) is one of the main criteria which get little attention from researchers on the topic of CHs selection. In this study, an RSSI based scheme was proposed which utilizes Fuzzy Logic approach in order to be combined with residual energy and centrality of the fuzzy descriptor. In order to evaluate the proposed scheme, the performance Multi-Tier Protocol (MAP) and Stable Election Protocol (SEP) were compared. The simulation results show that the proposed approach has significantly prolonged the survival time of the network against SEP and MAP, while effectively decelerating the dead process of sensor nodes.</span>


2012 ◽  
Vol 198-199 ◽  
pp. 1668-1671
Author(s):  
Zhu Guo Li ◽  
Bing Wen Wang ◽  
Li Zhu Feng

The past few years have witnessed increasing focus on the potential applications of wireless sensor networks. Sensors in these networks are expected to be remotely dispersed in large number and to operate autonomously and unattended. Clustering is a widely used technique that can enhance scalability and decrease energy consumption over sensor networks. We present an energy-efficient distributed multi-hop clustering approach for sensor networks, which combined multi-hop transmission with clustering method, aiming to balance the energy dissipation and prolong the whole network lifetime. Simulations showed that the protocol proposed worked nearly 100% more efficient compared with LEACH and HEED.


2016 ◽  
Vol 11 (2) ◽  
pp. 2641-2656
Author(s):  
Basim Abood ◽  
Aliaa Hussien ◽  
Yu Li ◽  
Desheng Wang

The most important consideration in designing protocols for wireless sensor networks is the energy constraint of nodes because in most cases battery recharging is inconvenient or impossible. Therefore, many researches have been done to overcome this demerit. Clustering is one of the main approaches in designing scalable and energy-efficient protocols for wireless sensor networks. The cluster heads take the task of data aggregation and data routing to decrease the amount of communication and this prolongs the network lifetime. LEACH protocol is one of the famous of them. In this paper, we proposed a novel scheme to investigate the cluster, the Fuzzy Logic Cluster Leach Protocol (FUZZY-LEACH), which uses Fuzzy Logic Inference System (FIS) in the cluster process. We demonstrate that using multiple parameters in cluster reduces energy consumption. We compare our technique with the LEACH protocol to show that using a multi parameter FIS enhances the network lifetime significantly. Simulation results demonstrate that the network lifetime achieved by the proposed method could be increased by nearly 28.5% more than that obtained by LEACH protocol in  scenario, and by nearly 26.4% more than that LEACH protocol in  scenario.


Sign in / Sign up

Export Citation Format

Share Document