scholarly journals Energy Efficient Residual Energy Monitoring in Wireless Sensor Networks

2009 ◽  
Vol 5 (6) ◽  
pp. 748-770 ◽  
Author(s):  
Edward Chan ◽  
Song Han
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Aaqil Somauroo ◽  
Vandana Bassoo

Due to its boundless potential applications, Wireless Sensor Networks have been subject to much research in the last two decades. WSNs are often deployed in remote environments making replacement of batteries not feasible. Low energy consumption being of prime requisite led to the development of energy-efficient routing protocols. The proposed routing algorithms seek to prolong the lifetime of sensor nodes in the relatively unexplored area of 3D WSNs. The schemes use chain-based routing technique PEGASIS as basis and employ genetic algorithm to build the chain instead of the greedy algorithm. Proposed schemes will incorporate an energy and distance aware CH selection technique to improve load balancing. Clustering of the network is also implemented to reduce number of nodes in a chain and hence reduce delay. Simulation of our proposed protocols is carried out for homogeneous networks considering separately cases for a static base-station inside and outside the network. Results indicate considerable improvement in lifetime over PEGASIS of 817% and 420% for base station inside and outside the network respectively. Residual energy and delay performance are also considered.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Rajesh Kumar Varun ◽  
Rakesh C. Gangwar ◽  
Omprakash Kaiwartya ◽  
Geetika Aggarwal

In wireless sensor networks, energy is a precious resource that should be utilized wisely to improve its life. Uneven distribution of load over sensor devices is also the reason for the depletion of energy that can cause interruptions in network operations as well. For the next generation’s ubiquitous sensor networks, a single artificial intelligence methodology is not able to resolve the issue of energy and load. Therefore, this paper proposes an energy-efficient routing using a fuzzy neural network (ERFN) to minimize the energy consumption while fairly equalizing energy consumption among sensors thus as to prolong the lifetime of the WSN. The algorithm utilizes fuzzy logic and neural network concepts for the intelligent selection of cluster head (CH) that will precisely consume equal energy of the sensors. In this work, fuzzy rules, sets, and membership functions are developed to make decisions regarding next-hop selection based on the total residual energy, link quality, and forward progress towards the sink. The developed algorithm ERFN proofs its efficiency as compared to the state-of-the-art algorithms concerning the number of alive nodes, percentage of dead nodes, average energy decay, and standard deviation of residual energy.


2013 ◽  
Vol 11 (7) ◽  
pp. 2787-2791
Author(s):  
T. Lalitha ◽  
Jayanthila Devi ◽  
Dr.G.M. Kadh

Energy is an extremely critical resource for battery-powered wireless sensor networks (WSN), thus making energy-efficient protocol design a key challenging problem. Most of the existing energy-efficient routing protocols always forward packets along the minimum energy path to the sink to merely minimize energy consumption, which causes an unbalanced distribution of forming residue energy among sensor nodes, and eventually results in a network partition. In this paper, with the help of the concept of potential in physics, we design an Energy-Balanced Routing Protocol (EBRP) by constructing a mixed virtual potential field in terms of depth, energy density, and residual energy. The goal of this basic approach is to force packets to move toward the sink through the dense energy area to protect the nodes with relatively low residual energy. To address the routing loop problem emerging in this basic algorithm, enhanced mechanisms are proposed to detect and eliminate loops. The basic algorithm and loop elimination mechanism are first validated through extensive simulation experiments. 


Author(s):  
Muhammad Inam ◽  
Zhou Li ◽  
Zulfiqar Ali Zardari ◽  
Fawaz Mahiuob Mohammed Mokbal

The sensor nodes have limited computation, sensing, communication capabilities and generally operated by batteries in a harsh atmosphere with non-replenish able power sources. These limitations force the sensor network subject to failure because most of the energy is spent on sensing, computing and data transmission. This paper introduces an Energy Efficient Clustering and Shortest-Path Routing Protocol (EECSRP) to assist Wireless Sensor Networks (WSNs) by (a) extending the lifespan of the network (b) effectively using the battery power (c) decreasing the network overhead and (d) ensuring a high packet transmission ratio with minimal delay. The delay time-based Cluster Head (CH) is elected based on the node degree, residual energy and Received Signal Strength (RSS) to accomplish the goal. Additionally, the RSS-based network partitioning is implemented to evaluate the gradient based on demand routing between source (sensing node) and destination (BS). Whenever the current CH residual energy goes under the threshold level, the proposed protocol performs the clustering process, reducing the exchange of control packets. However, the BS periodically gathers the data from every single CH which helps to reduce the collision and Medium Access Control (MAC) layer conflict. From the simulation results, it is the evident that the proposed protocol performance in terms of average end-to-end latency, packet delivery ratio, average energy consumption and control overhead is better than the well-known current protocols.


2020 ◽  
pp. 34-41
Author(s):  
Olexander Belej

In wireless sensor networks, the clustering method is often used to transmit information, which is one of the most energy efficient approaches. Since the master cluster node interacts with other nodes in the network, a node with a high residual energy is selected to perform its functions. The technology of selecting the main node based on fuzzy logic, which involves the use of a number of input parameters, the effect of which is demonstrated in the article, is proposed.


2018 ◽  
Vol 14 (9) ◽  
pp. 155014771880062 ◽  
Author(s):  
Yourui Huang ◽  
Zhenping Chen ◽  
Tao Han ◽  
Xiaotao Liu

Aimed at the limited energy supply and imperfect topological tolerance for underground wireless sensor networks, one energy-efficient random-walk scale-free topology model is proposed in this article, and a power network topology structure with adjustable rate index gets generated. At first, the network is divided into several clusters, and the cluster heads are selected with the use of random-walk strategy. During the growth of the network, with the introduction of preferred connection for scale-free network, together with considering both the node’s residual energy and the distance among nodes, nodes with larger residual energy present higher connectivity probability, so that the energy balance of the network gets realized. Simulation results show that the communication among the cluster heads selected by the proposed random-walk scale-free topology model presents not only the power-law characteristics of scale-free networks but also has better stability, higher fault tolerance, and it can still balance the energy consumption for nodes and the network and therefore can prolong the lifetime of the network.


Sign in / Sign up

Export Citation Format

Share Document