The Motivic Group H−1,−1BM

Author(s):  
Christian Haesemeyer ◽  
Charles A. Weibel

This chapter develops some more of the properties of the Borel–Moore homology groups 𝐻𝐵𝑀 −1,−1(𝑋). It shows that it is contravariant in 𝑋 for finite flat maps, and has a functorial pushforward for proper maps. If 𝑋 is smooth and proper (in characteristic 0), 𝐻𝐵𝑀 −1,−1(𝑋) agrees with 𝐻2𝒅+1,𝒅+1(𝑋, ℤ), and has a nice presentation, which this chapter explores in more depth. The main result in this chapter is the proposition that: if 𝑋 is a norm variety for ª and 𝑘 is 𝓁-special then the image of 𝐻𝐵𝑀 −1,−1(𝑋) → 𝑘× is the group of units 𝑏 such that ª ∪ 𝑏 vanishes in 𝐾𝑀 𝑛+1(𝑘)/𝓁. Again, this chapter also explores the historic trajectory of its equations.

1992 ◽  
Vol 45 (3) ◽  
pp. 503-506 ◽  
Author(s):  
R.K. Sharma ◽  
Vikas Bist

Let KG be the group algebra of a group G over a field K of characteristic p > 0. It is proved that the following statements are equivalent: KG is Lie nilpotent of class ≤ p, KG is strongly Lie nilpotent of class ≤ p and G′ is a central subgroup of order p. Also, if G is nilpotent and G′ is of order pn then KG is strongly Lie nilpotent of class ≤ pn and both U(KG)/ζ(U(KG)) and U(KG)′ are of exponent pn. Here U(KG) is the group of units of KG. As an application it is shown that for all n ≤ p+ 1, γn(L(KG)) = 0 if and only if γn(KG) = 0.


Author(s):  
Jun Ueki

AbstractWe formulate and prove a profinite rigidity theorem for the twisted Alexander polynomials up to several types of finite ambiguity. We also establish torsion growth formulas of the twisted homology groups in a {{\mathbb{Z}}}-cover of a 3-manifold with use of Mahler measures. We examine several examples associated to Riley’s parabolic representations of two-bridge knot groups and give a remark on hyperbolic volumes.


2021 ◽  
Vol 19 (1) ◽  
pp. 706-723
Author(s):  
Yuri V. Muranov ◽  
Anna Szczepkowska

Abstract In this paper, we introduce the category and the homotopy category of edge-colored digraphs and construct the functorial homology theory on the foundation of the path homology theory provided by Grigoryan, Muranov, and Shing-Tung Yau. We give the construction of the path homology theory for edge-colored graphs that follows immediately from the consideration of natural functor from the category of graphs to the subcategory of symmetrical digraphs. We describe the natural filtration of path homology groups of any digraph equipped with edge coloring, provide the definition of the corresponding spectral sequence, and obtain commutative diagrams and braids of exact sequences.


Author(s):  
Amr Ali Al-Maktry

AbstractLet R be a finite commutative ring. The set $${{\mathcal{F}}}(R)$$ F ( R ) of polynomial functions on R is a finite commutative ring with pointwise operations. Its group of units $${{\mathcal{F}}}(R)^\times $$ F ( R ) × is just the set of all unit-valued polynomial functions. We investigate polynomial permutations on $$R[x]/(x^2)=R[\alpha ]$$ R [ x ] / ( x 2 ) = R [ α ] , the ring of dual numbers over R, and show that the group $${\mathcal{P}}_{R}(R[\alpha ])$$ P R ( R [ α ] ) , consisting of those polynomial permutations of $$R[\alpha ]$$ R [ α ] represented by polynomials in R[x], is embedded in a semidirect product of $${{\mathcal{F}}}(R)^\times $$ F ( R ) × by the group $${\mathcal{P}}(R)$$ P ( R ) of polynomial permutations on R. In particular, when $$R={\mathbb{F}}_q$$ R = F q , we prove that $${\mathcal{P}}_{{\mathbb{F}}_q}({\mathbb{F}}_q[\alpha ])\cong {\mathcal{P}}({\mathbb{F}}_q) \ltimes _\theta {{\mathcal{F}}}({\mathbb{F}}_q)^\times $$ P F q ( F q [ α ] ) ≅ P ( F q ) ⋉ θ F ( F q ) × . Furthermore, we count unit-valued polynomial functions on the ring of integers modulo $${p^n}$$ p n and obtain canonical representations for these functions.


1993 ◽  
Vol 68 (1) ◽  
pp. 653-672 ◽  
Author(s):  
Dominique Arlettaz
Keyword(s):  

1982 ◽  
Vol 92 (3) ◽  
pp. 451-466 ◽  
Author(s):  
W. J. R. Mitchell

This paper investigates the ‘general position’ properties which ANR's may possess. The most important of these is the disjoint discs property of Cannon (5), which plays a vital role in recent striking characterizations of manifolds (5, 9, 12, 18, 19, 22). Also considered are the property Δ of Borsuk(2) (which ensures an abundance of dimension-preserving maps), and the vanishing of local homology groups up to a given dimension (cf. (9)). Our main results give relations between these properties, and clarify their behaviour under the stabilization operation of taking cartesian product with the real line. In the last section these results are applied to give partial solutions to questions about homogeneous ANR's.


2008 ◽  
Vol 17 (10) ◽  
pp. 1199-1221 ◽  
Author(s):  
TERUHISA KADOKAMI ◽  
YASUSHI MIZUSAWA

Based on the analogy between links and primes, we present an analogue of the Iwasawa's class number formula in a Zp-extension for the p-homology groups of pn-fold cyclic covers of a link in a rational homology 3-sphere. We also describe the associated Iwasawa invariants precisely for some examples and discuss analogies with the number field case.


Sign in / Sign up

Export Citation Format

Share Document