A Novel Mechanism of Face Recognition Using Stepwise Linear Discriminant Analysis and Linear Vector Quantization Classifiers

Author(s):  
Abdul Quyoom

Face recognition is a hard and special case of computer vision and pattern recognition. It is a challenging problem due to various kinds of variations of face images.  This paper proposes a robust face recognition system. Here stepwise linear discriminant analysis (SWLDA) is used for the feature extraction and Linear Vector Quantization (LVQ) Classifier is used for face recognition. The main focus of SWLDA is to select localized features from the face. In order to increase the low-between-class variance and to reduce within-class-variance among different expression classes and use F-test value through which results are analyzed. In recognition, firstly face is detected using canny edge detection method, after face detection SWLDA is employed to extract the face features, and end linear vector quantization is applied for face recognition. To achieve optimum results and increase the robustness of the proposed system, experiments are performed on various different samples of face image, which consist of face image with the different pose and facial expression in order to validate the system, we use two famous datasets which include Yale and ORL face database.

Author(s):  
Isnawati Muslihah ◽  
Muqorobin Muqorobin

Face recognition is an identification system that uses the characteristics of a person's face for processing. There is a feature in the face image so that it can be distinguished between one face and another face. One way to recognize face images is to analyze the texture of the face image. Texture analysis generally requires a feature extraction process. In different images, the characteristics will also differ. This characteristic will be the basis for the recognition of facial images. However, existing face recognition methods experience efficiency problems and rely heavily on the extraction of the right features. This study aims to study the texture characteristics of the extraction results using the Local Binary Pattern (LBP) method which is applied to deal with the introduction of Probabilistic Linear Discriminant Analysis (PLDA). The data used in this study are human face images from the AR Faces database, consisting of 136 objects (76 men and 60 women), each of which has 7 types of images Based on the results of testing shows the LBP method can produce the highest accuracy with a value of 95.53% in the introduction of PLDA.


2014 ◽  
Vol 71 (1) ◽  
Author(s):  
Purbandini Purbandini

Development of an optimal face recognition system will greatly depend on the characteristics of the selection process are as a basis to pattern recognition. In the characteristic selection process, there are 2 aspects that will be of mutual influence such the reduction of the amount of data used in the classification aspects and increasing discrimination ability aspects. Linear Discriminat Analysis method helps presenting the global structure while Laplacianfaces method is one method that is based on appearance (appearance-based method) in face recognition, in which the local manifold structure presented in the adjacency graph mapped from the training data points. Linear Discriminant Analysis QR decomposition has a computationally low cost because it has small dimensions so that the efficiency and scalability are very high when compared with algorithms of other Linear Discriminant Analysis methods. Laplacianfaces QR decomposition was a algorithm to obtain highly speed and accuracy, and tiny space to keep data on the face recognition. This algorithm consists of 2 stages. The first stage maximizes the distance of between-class scatter matrices by using QR decomposition and the second stage to minimize the distance of within-class scatter matrices. Therefore, it is obtained an optimal discriminant in the data. In this research, classification using the Euclidean distance method. In these experiments using face databases of the Olivetti-Att-ORL, Bern and Yale. The minimum error was achieved with the Laplacianfaces QR decomposition and Linear Discriminant Analysis QR decomposition are 5.88% and 9.08% respectively. 


Author(s):  
Wei Jen Chew ◽  
Kah Phooi Seng ◽  
Li-Minn Ang

Face recognition using 3D faces has become widely popular in the last few years due to its ability to overcome recognition problems encountered by 2D images. An important aspect to a 3D face recognition system is how to represent the 3D face image. In this chapter, it is proposed that the 3D face image be represented using adaptive non-uniform meshes which conform to the original range image. Basically, the range image is converted to meshes using the plane fitting method. Instead of using a mesh with uniform sized triangles, an adaptive non-uniform mesh was used instead to reduce the amount of points needed to represent the face. This is because some parts of the face have more contours than others, hence requires a finer mesh. The mesh created is then used for face recognition purposes, using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Simulation results show that an adaptive non-uniform mesh is able to produce almost similar recognition rates compared to uniform meshes but with significant reduction in number of vertices.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Wen-Sheng Chen ◽  
Chu Zhang ◽  
Shengyong Chen

Fisher linear discriminant analysis (FLDA) is a classic linear feature extraction and dimensionality reduction approach for face recognition. It is known that geometric distribution weight information of image data plays an important role in machine learning approaches. However, FLDA does not employ the geometric distribution weight information of facial images in the training stage. Hence, its recognition accuracy will be affected. In order to enhance the classification power of FLDA method, this paper utilizes radial basis function (RBF) with fractional order to model the geometric distribution weight information of the training samples and proposes a novel geometric distribution weight information based Fisher discriminant criterion. Subsequently, a geometric distribution weight information based LDA (GLDA) algorithm is developed and successfully applied to face recognition. Two publicly available face databases, namely, ORL and FERET databases, are selected for evaluation. Compared with some LDA-based algorithms, experimental results exhibit that our GLDA approach gives superior performance.


Sign in / Sign up

Export Citation Format

Share Document