scholarly journals Texture Characteristic of Local Binary Pattern on Face Recognition with Probabilistic Linear Discriminant Analysis

Author(s):  
Isnawati Muslihah ◽  
Muqorobin Muqorobin

Face recognition is an identification system that uses the characteristics of a person's face for processing. There is a feature in the face image so that it can be distinguished between one face and another face. One way to recognize face images is to analyze the texture of the face image. Texture analysis generally requires a feature extraction process. In different images, the characteristics will also differ. This characteristic will be the basis for the recognition of facial images. However, existing face recognition methods experience efficiency problems and rely heavily on the extraction of the right features. This study aims to study the texture characteristics of the extraction results using the Local Binary Pattern (LBP) method which is applied to deal with the introduction of Probabilistic Linear Discriminant Analysis (PLDA). The data used in this study are human face images from the AR Faces database, consisting of 136 objects (76 men and 60 women), each of which has 7 types of images Based on the results of testing shows the LBP method can produce the highest accuracy with a value of 95.53% in the introduction of PLDA.

Author(s):  
Abdul Quyoom

Face recognition is a hard and special case of computer vision and pattern recognition. It is a challenging problem due to various kinds of variations of face images.  This paper proposes a robust face recognition system. Here stepwise linear discriminant analysis (SWLDA) is used for the feature extraction and Linear Vector Quantization (LVQ) Classifier is used for face recognition. The main focus of SWLDA is to select localized features from the face. In order to increase the low-between-class variance and to reduce within-class-variance among different expression classes and use F-test value through which results are analyzed. In recognition, firstly face is detected using canny edge detection method, after face detection SWLDA is employed to extract the face features, and end linear vector quantization is applied for face recognition. To achieve optimum results and increase the robustness of the proposed system, experiments are performed on various different samples of face image, which consist of face image with the different pose and facial expression in order to validate the system, we use two famous datasets which include Yale and ORL face database.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Kun Sun ◽  
Xin Yin ◽  
Mingxin Yang ◽  
Yang Wang ◽  
Jianying Fan

At present, the face recognition method based on deep belief network (DBN) has advantages of automatically learning the abstract information of face images and being affected slightly by active factors, so it becomes the main method in the face recognition area. Because DBN ignores the local information of face images, the face recognition rate based on DBN is badly affected. To solve this problem, a face recognition method based on center-symmetric local binary pattern (CS-LBP) and DBN (FRMCD) is proposed in this paper. Firstly, the face image is divided into several subblocks. Secondly, CS-LBP is used to extract texture features of each image subblock. Thirdly, texture feature histograms are formed and input into the DBN visual layer. Finally, face classification and face recognition are completed through deep learning in DBN. Through the experiments on face databases ORL, Extend Yale B, and CMU-PIE by the proposed method (FRMCD), the best partitioning way of the face image and the hidden unit number of the DBN hidden layer are obtained. Then, comparative experiments between the FRMCD and traditional methods are performed. The results show that the recognition rate of FRMCD is superior to those of traditional methods; the highest recognition rate is up to 98.82%. When the number of training samples is less, the FRMCD has more significant advantages. Compared with the method based on local binary pattern (LBP) and DBN, the time-consuming of FRMCD is shorter.


2016 ◽  
Vol 10 (6) ◽  
pp. 1118-1129 ◽  
Author(s):  
Qicong Wang ◽  
Binbin Wang ◽  
Xinjie Hao ◽  
Lisheng Chen ◽  
Jingmin Cui ◽  
...  

2012 ◽  
Vol 1 (2) ◽  
pp. 107-118 ◽  
Author(s):  
Sridhar Dasari ◽  
I.V. Murali Krishna

In this paper, a new combined Face Recognition method based on Legendre moments with Linear Discriminant Analysis and Probabilistic Neural Network is proposed. The Legendre moments are orthogonal and scale invariants hence they are suitable for representing the features of the face images. The proposed face recognition method consists of three steps, i) Feature extraction using Legendre moments ii) Dimensionality reduction using Linear Discrminant Analysis (LDA) and iii) classification using Probabilistic Neural Network (PNN). Linear Discriminant Analysis searches the directions for maximum discrimination of classes in addition to dimensionality reduction. Combination of Legendre moments and Linear Discriminant Analysis is used for improving the capability of Linear Discriminant Analysis when few samples of images are available. Probabilistic Neural network gives fast and accurate classification of face images. Evaluation was performed on two face data bases. First database of 400 face images from Olivetty Research Laboratories (ORL) face database, and the second database of thirteen students are taken. The proposed method gives fast and better recognition rate when compared to other classifiers.DOI: 10.18495/comengapp.12.107118


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Wen-Sheng Chen ◽  
Chu Zhang ◽  
Shengyong Chen

Fisher linear discriminant analysis (FLDA) is a classic linear feature extraction and dimensionality reduction approach for face recognition. It is known that geometric distribution weight information of image data plays an important role in machine learning approaches. However, FLDA does not employ the geometric distribution weight information of facial images in the training stage. Hence, its recognition accuracy will be affected. In order to enhance the classification power of FLDA method, this paper utilizes radial basis function (RBF) with fractional order to model the geometric distribution weight information of the training samples and proposes a novel geometric distribution weight information based Fisher discriminant criterion. Subsequently, a geometric distribution weight information based LDA (GLDA) algorithm is developed and successfully applied to face recognition. Two publicly available face databases, namely, ORL and FERET databases, are selected for evaluation. Compared with some LDA-based algorithms, experimental results exhibit that our GLDA approach gives superior performance.


Sign in / Sign up

Export Citation Format

Share Document