3D Face Recognition using an Adaptive Non-Uniform Face Mesh

Author(s):  
Wei Jen Chew ◽  
Kah Phooi Seng ◽  
Li-Minn Ang

Face recognition using 3D faces has become widely popular in the last few years due to its ability to overcome recognition problems encountered by 2D images. An important aspect to a 3D face recognition system is how to represent the 3D face image. In this chapter, it is proposed that the 3D face image be represented using adaptive non-uniform meshes which conform to the original range image. Basically, the range image is converted to meshes using the plane fitting method. Instead of using a mesh with uniform sized triangles, an adaptive non-uniform mesh was used instead to reduce the amount of points needed to represent the face. This is because some parts of the face have more contours than others, hence requires a finer mesh. The mesh created is then used for face recognition purposes, using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Simulation results show that an adaptive non-uniform mesh is able to produce almost similar recognition rates compared to uniform meshes but with significant reduction in number of vertices.

Author(s):  
Abdul Quyoom

Face recognition is a hard and special case of computer vision and pattern recognition. It is a challenging problem due to various kinds of variations of face images.  This paper proposes a robust face recognition system. Here stepwise linear discriminant analysis (SWLDA) is used for the feature extraction and Linear Vector Quantization (LVQ) Classifier is used for face recognition. The main focus of SWLDA is to select localized features from the face. In order to increase the low-between-class variance and to reduce within-class-variance among different expression classes and use F-test value through which results are analyzed. In recognition, firstly face is detected using canny edge detection method, after face detection SWLDA is employed to extract the face features, and end linear vector quantization is applied for face recognition. To achieve optimum results and increase the robustness of the proposed system, experiments are performed on various different samples of face image, which consist of face image with the different pose and facial expression in order to validate the system, we use two famous datasets which include Yale and ORL face database.


2014 ◽  
pp. 42-49
Author(s):  
Agata Manolova ◽  
Krasimir Tonchev

In this paper we present a comparative analysis of two algorithms for image representation with application to recognition of 3D face scans with the presence of facial expressions. We begin with processing of the input point cloud based on curvature analysis and range image representation to achieve a unique representation of the face features. Then, subspace projection using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) is performed. Finally classification with different classifiers will be performed over the 3D face scans dataset with 61 subject with 7 scans per subject (427 scans), namely two "frontal", one "look-up", one "look-down", one "smile", one "laugh", one "random expression". The experimental results show a high recognition rate for the chosen database. They demonstrate the effectiveness of the proposed 3D image representations and subspace projection for 3D face recognition.


2019 ◽  
Vol 19 (2) ◽  
pp. 28-37
Author(s):  
Hawraa H. Abbas ◽  
Bilal Z. Ahmed ◽  
Ahmed Kamil Abbas

Abstract The face is the preferable biometrics for person recognition or identification applications because person identifying by face is a human connate habit. In contrast to 2D face recognition, 3D face recognition is practically robust to illumination variance, facial cosmetics, and face pose changes. Traditional 3D face recognition methods describe shape variation across the whole face using holistic features. In spite of that, taking into account facial regions, which are unchanged within expressions, can acquire high performance 3D face recognition system. In this research, the recognition analysis is based on defining a set of coherent parts. Those parts can be considered as latent factors in the face shape space. Non-negative matrix Factorisation technique is used to segment the 3D faces to coherent regions. The best recognition performance is achieved when the vertices of 20 face regions are utilised as a feature vector for recognition task. The region-based 3D face recognition approach provides a 96.4% recognition rate in FRGCv2 dataset.


2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Naeem Ratyal ◽  
Imtiaz Ahmad Taj ◽  
Muhammad Sajid ◽  
Anzar Mahmood ◽  
Sohail Razzaq ◽  
...  

Face recognition aims to establish the identity of a person based on facial characteristics and is a challenging problem due to complex nature of the facial manifold. A wide range of face recognition applications are based on classification techniques and a class label is assigned to the test image that belongs to the unknown class. In this paper, a pose invariant deeply learned multiview 3D face recognition approach is proposed and aims to address two problems: face alignment and face recognition through identification and verification setups. The proposed alignment algorithm is capable of handling frontal as well as profile face images. It employs a nose tip heuristic based pose learning approach to estimate acquisition pose of the face followed by coarse to fine nose tip alignment using L2 norm minimization. The whole face is then aligned through transformation using knowledge learned from nose tip alignment. Inspired by the intrinsic facial symmetry of the Left Half Face (LHF) and Right Half Face (RHF), Deeply learned (d) Multi-View Average Half Face (d-MVAHF) features are employed for face identification using deep convolutional neural network (dCNN). For face verification d-MVAHF-Support Vector Machine (d-MVAHF-SVM) approach is employed. The performance of the proposed methodology is demonstrated through extensive experiments performed on four databases: GavabDB, Bosphorus, UMB-DB, and FRGC v2.0. The results show that the proposed approach yields superior performance as compared to existing state-of-the-art methods.


2018 ◽  
Vol 9 (1) ◽  
pp. 60-77 ◽  
Author(s):  
Souhir Sghaier ◽  
Wajdi Farhat ◽  
Chokri Souani

This manuscript presents an improved system research that can detect and recognize the person in 3D space automatically and without the interaction of the people's faces. This system is based not only on a quantum computation and measurements to extract the vector features in the phase of characterization but also on learning algorithm (using SVM) to classify and recognize the person. This research presents an improved technique for automatic 3D face recognition using anthropometric proportions and measurement to detect and extract the area of interest which is unaffected by facial expression. This approach is able to treat incomplete and noisy images and reject the non-facial areas automatically. Moreover, it can deal with the presence of holes in the meshed and textured 3D image. It is also stable against small translation and rotation of the face. All the experimental tests have been done with two 3D face datasets FRAV 3D and GAVAB. Therefore, the test's results of the proposed approach are promising because they showed that it is competitive comparable to similar approaches in terms of accuracy, robustness, and flexibility. It achieves a high recognition performance rate of 95.35% for faces with neutral and non-neutral expressions for the identification and 98.36% for the authentification with GAVAB and 100% with some gallery of FRAV 3D datasets.


Author(s):  
Li-Minn Ang ◽  
King Hann Lim ◽  
Kah Phooi Seng ◽  
Siew Wen Chin

This chapter presents a new face recognition system comprising of feature extraction and the Lyapunov theory-based neural network. It first gives the definition of face recognition which can be broadly divided into (i) feature-based approaches, and (ii) holistic approaches. A general review of both approaches will be given in the chapter. Face features extraction techniques including Principal Component Analysis (PCA) and Fisher’s Linear Discriminant (FLD) are discussed. Multilayered neural network (MLNN) and Radial Basis Function neural network (RBF NN) will be reviewed. Two Lyapunov theory-based neural classifiers: (i) Lyapunov theory-based RBF NN, and (ii) Lyapunov theory-based MLNN classifiers are designed based on the Lyapunov stability theory. The design details will be discussed in the chapter. Experiments are performed on two benchmark databases, ORL and Yale. Comparisons with some of the existing conventional techniques are given. Simulation results have shown good performance for face recognition using the Lyapunov theory-based neural network systems.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Tongxin Wei ◽  
Qingbao Li ◽  
Jinjin Liu ◽  
Ping Zhang ◽  
Zhifeng Chen

In the process of face recognition, face acquisition data is seriously distorted. Many face images collected are blurred or even missing. Faced with so many problems, the traditional image inpainting was based on structure, while the current popular image inpainting method is based on deep convolutional neural network and generative adversarial nets. In this paper, we propose a 3D face image inpainting method based on generative adversarial nets. We identify two parallels of the vector to locate the planer positions. Compared with the previous, the edge information of the missing image is detected, and the edge fuzzy inpainting can achieve better visual match effect. We make the face recognition performance dramatically boost.


Sign in / Sign up

Export Citation Format

Share Document