scholarly journals Optimization Model of Fuzzy Rule Based Expert System Using Max-Min Composition and Schema Mapping Translation

INSIST ◽  
2017 ◽  
Vol 2 (1) ◽  
pp. 30 ◽  
Author(s):  
Hartono Hartono ◽  
Tiarma Simanihuruk

Abstract— Fuzzy Decision Making involves a process of selecting one or more alternatives or solutions from a finite set of alternatives which suits a set of constraints. In the rule-based expert system, the terms following in the decision making is using knowledge based and the IF Statements of the rule are called the premises, while the THEN part of the rule is called conclusion. Membership function and knowledge based determines the performance of fuzzy rule based expert system. Membership function determines the performance of fuzzy logic as it relates to represent fuzzy set in a computer. Knowledge Based in the other side relates to capturing human cognitive and judgemental processes, such as thinking and reasoning. In this paper, we have proposed a method by using Max-Min Composition combined with Genetic Algorithm for determining membership function of Fuzzy Logic and Schema Mapping Translation for the rules assignment.Keywords— Fuzzy Decision Making, Rule-Based Expert System, Membership Function, Knowledge Based, Max-Min Composition, Schema Mapping Translation

Author(s):  
Nur Hasanah ◽  
Retantyo Wardoyo

AbstrakPada 2025 diperkirakan 12,4 juta orang yang mengidap Diabetes Melitus (DM) di Indonesia. Perencanaan makan merupakan salah satu pilar dalam pengelolaan DM. Sistem pakar dapat berfungsi sebagai konsultan yang memberi saran kepada pengguna sekaligus sebagai asisten bagi pakar. Logika fuzzy fleksibel, memiliki kemampuan dalam proses penalaran secara bahasa dan memodelkan fungsi-fungsi matematika yang kompleks. Penelitian ini bertujuan menerapkan metode ketidakpastian logika fuzzy pada purwarupa sistem pakar untuk menentukan menu harian. Manfaat penelitian ini adalah untuk mengetahui keakuratan mesin inferensi Mamdani Product.            Pendekatan basis pengetahuan yang digunakan pada sistem pakar ini adalah dengan Rule-Based Reasoning. Proses inferensi pada sistem pakar menggunakan logika fuzzy dengan mesin inferensi Mamdani Product. Fuzzifier yang digunakan adalah Singleton sedangkan defuzzifier yang digunakan adalah Rata-Rata Terpusat. Penggunaan kombinasi Singleton fuzzifier, mesin inferensi Product dan defuzzifier Rata-Rata Terpusat yang digunakan pada sistem pakar dapat diterapkan untuk domain permasalahan yang dibahas. Meskipun demikian, terdapat kemungkinan Singleton fuzzifier tidak dapat memicu beberapa atau semua aturan. Jika semua aturan tidak dapat dipicu maka tidak dapat disimpulkan kebutuhan kalori hariannya. Kata kunci— sistem pakar, logika fuzzy, mamdani product, diabetes, menu  AbstractIt is predicted that 12.4 million people will suffer from Diabetes Mellitus (DM) in Indonesia in 2025. Menu planning is one of the important aspects in DM management. Expert system can be used as a consultant that gives suggestion to users as well as an assistant for experts. Fuzzy logic is flexible, has the ability in linguistic reasoning and can model complex mathemathical functions. This research aims to implement fuzzy logic uncertainty method into expert sistem prototype to determine diabetic daily menu. The advantage is to find out the accuracy of Mamdani Product inference engine. The knowledge-based approach in this expert system uses Rule-Based Reasoning. The inference process employs fuzzy logic making use of Mamdani Product inference engine. The fuzzifier used is Singleton while defuzzifier is Center Average.            The combination of Singleton fuzzifier, Mamdani Product inference engine and Center Average defuzzifier that is used can be applied in the domain of the problem under discussion. In spite of the case, there is possibility that Singleton fuzzifier can’t trigger some or all of the rules. If all of the rules can’t be triggered then the diabetic daily menu can’t be concluded. Keyword— expert system, fuzzy logic, mamdani product, diabetes, menu


Fuzzy Systems ◽  
2017 ◽  
pp. 418-442
Author(s):  
A. V. Senthil Kumar ◽  
M. Kalpana

In the field of medicine decision making it is very important to deal with uncertainties, knowledge, and information. Decision making depends upon the experience, capability, and the observation of doctors. In the case of complex situations, it is very tough to give a correct decision. So computer-based procedure is very much essential. Fuzzy Expert System is used for decision making in the field of medicine. Fuzzy expert system consists of the following elements, fuzzification interface, S Fuzzy Assessment Methodology, and defuzzification. S Fuzzy Assessment Methodology uses the K Ratio to find overlap between membership function. To measure the similarity between fuzzy set, fuzzy number, and fuzzy rule, T Fuzzy similarity is used. Similar fuzzy sets are merged to form a common set; a new methodology was framed to identify the similarity between fuzzy rules with fuzzy numbers, and S Weights are to manage uncertainty in rules. S Weights use consequent and antecedent part of each rule. The efficiency of the proposed algorithm was implemented using MATLAB Fuzzy Logic tool box to construct a fuzzy expert system to diagnose diabetes.


Author(s):  
A. V. Senthil Kumar ◽  
M. Kalpana

In the field of medicine decision making it is very important to deal with uncertainties, knowledge, and information. Decision making depends upon the experience, capability, and the observation of doctors. In the case of complex situations, it is very tough to give a correct decision. So computer-based procedure is very much essential. Fuzzy Expert System is used for decision making in the field of medicine. Fuzzy expert system consists of the following elements, fuzzification interface, S Fuzzy Assessment Methodology, and defuzzification. S Fuzzy Assessment Methodology uses the K Ratio to find overlap between membership function. To measure the similarity between fuzzy set, fuzzy number, and fuzzy rule, T Fuzzy similarity is used. Similar fuzzy sets are merged to form a common set; a new methodology was framed to identify the similarity between fuzzy rules with fuzzy numbers, and S Weights are to manage uncertainty in rules. S Weights use consequent and antecedent part of each rule. The efficiency of the proposed algorithm was implemented using MATLAB Fuzzy Logic tool box to construct a fuzzy expert system to diagnose diabetes.


2005 ◽  
Vol 18 (2) ◽  
pp. 319-328 ◽  
Author(s):  
Claudio Moraga

This paper gives basics and reviews some classical as well as new applications of fuzzy logic. The main emphasis of the paper is on fuzzy decision making under a linguistic view of fuzzy sets.


2021 ◽  
Vol 154 ◽  
pp. 107103
Author(s):  
Fanyong Meng ◽  
Jie Tang ◽  
Witold Pedrycz

Sign in / Sign up

Export Citation Format

Share Document