Optimization Model of Fuzzy Rule Based Expert System Using Max-Min Composition and Schema Mapping Translation
Abstract— Fuzzy Decision Making involves a process of selecting one or more alternatives or solutions from a finite set of alternatives which suits a set of constraints. In the rule-based expert system, the terms following in the decision making is using knowledge based and the IF Statements of the rule are called the premises, while the THEN part of the rule is called conclusion. Membership function and knowledge based determines the performance of fuzzy rule based expert system. Membership function determines the performance of fuzzy logic as it relates to represent fuzzy set in a computer. Knowledge Based in the other side relates to capturing human cognitive and judgemental processes, such as thinking and reasoning. In this paper, we have proposed a method by using Max-Min Composition combined with Genetic Algorithm for determining membership function of Fuzzy Logic and Schema Mapping Translation for the rules assignment.Keywords— Fuzzy Decision Making, Rule-Based Expert System, Membership Function, Knowledge Based, Max-Min Composition, Schema Mapping Translation