scholarly journals Fast Response Three Phase Induction Motor Using Indirect Field Oriented Control (IFOC) Based On Fuzzy-Backstepping

Author(s):  
Rizana Fauzi ◽  
Dedid Cahya Happyanto ◽  
Indra Adji Sulistijono

Induction Motor in Electrical drive system at a accelleration speed for example in electric cars have a hard speed setting is set on a wide range, causing an inconvenience for motorists and a fast response is required any change of speed. It is necessary for good system performance in control motor speed and torque at low speed or fast speed response, which is operated by Indirect Field Oriented Control (IFOC). Speed control on IFOC methods should be better to improving the performance of rapid response in the induction motor. In this paper presented a method of incorporation of Fuzzy Logic Controller and Backstepping (Fuzzy-Backstepping) to improve the dynamically response speed and torque in Induction Motor on electric car, so we get smoothness at any speed change and braking as well as maximum torque of induction motor. Test results showed that Fuzzy-Backstepping can increase the response to changes speed in electric car. System testing is done with variations of the reference point setting speed control system, the simulation results of the research showed that the IFOC method is not perfect in terms of induction motor speed regulation if it’s not use speed control. Fuzzy-Backstepping control is needed which can improve the response of output, so that the induction motor has a good performance, small oscillations when start working up to speed reference.Keywords: Fuzzy-Backstepping, IFOC, induction motor

2016 ◽  
Vol 78 (6-2) ◽  
Author(s):  
Jamal Abd Ali ◽  
M A Hannan ◽  
Azah Mohamed

Optimization techniques are increasingly used in research to improve the control of three-phase induction motor (TIM). Indirect field-oriented control (IFOC) scheme is employed to improve the efficiency and enhance the performance of variable speed control of TIM drives. The space vector pulse width modulation (SVPWM) technique is used for switching signals in a three-phase bridge inverter to minimize harmonics in the output signals of the inverter. In this paper, a novel scheme based on particle swarm optimization (PSO) algorithm is proposed to improve the variable speed control of IFOC in TIM. The PSO algorithm is used to search the best values of parameters of proportional-integral (PI) controller (proportional gain (kp) and integral gain (ki)) for each speed controller and voltage controller to improve the speed response for TIM. An optimal PI controller-based objective function is also used to tune and minimize the mean square error (MSE). Results of all tests verified the robustness of the PSO-PI controller for speed response in terms of damping capability, fast settling time, steady state error, and transient responses under different conditions of mechanical load and speed.


Sign in / Sign up

Export Citation Format

Share Document