IMPROVED INDIRECT FIELD-ORIENTED CONTROL OF INDUCTION MOTOR DRIVE BASED PSO ALGORITHM

2016 ◽  
Vol 78 (6-2) ◽  
Author(s):  
Jamal Abd Ali ◽  
M A Hannan ◽  
Azah Mohamed

Optimization techniques are increasingly used in research to improve the control of three-phase induction motor (TIM). Indirect field-oriented control (IFOC) scheme is employed to improve the efficiency and enhance the performance of variable speed control of TIM drives. The space vector pulse width modulation (SVPWM) technique is used for switching signals in a three-phase bridge inverter to minimize harmonics in the output signals of the inverter. In this paper, a novel scheme based on particle swarm optimization (PSO) algorithm is proposed to improve the variable speed control of IFOC in TIM. The PSO algorithm is used to search the best values of parameters of proportional-integral (PI) controller (proportional gain (kp) and integral gain (ki)) for each speed controller and voltage controller to improve the speed response for TIM. An optimal PI controller-based objective function is also used to tune and minimize the mean square error (MSE). Results of all tests verified the robustness of the PSO-PI controller for speed response in terms of damping capability, fast settling time, steady state error, and transient responses under different conditions of mechanical load and speed.

2021 ◽  
Vol 11 (6) ◽  
pp. 7861-7866
Author(s):  
N. H. Mugheri ◽  
M. U. Keerio ◽  
S. Chandio ◽  
R. H. Memon

The Three Phase Induction Motor (TIM) is one of the most widely used motors due to its low price, robustness, low maintenance cost, and high efficiency. In this paper, a Support Vector Regression (SVR) based controller for TIM speed control using Indirect Vector Control (IVC) is presented. The IVC method is more frequently used because it enables better speed control of the TIM with higher dynamic performance. Artificial Neural Network (ANN) controllers have been widely used for TIM speed control for several reasons such as their ability to successfully train without prior knowledge of the mathematical model, their learning ability, and their fast implementation speed. The SVR-based controller overcomes the drawbacks of the ANN-based controller, i.e. its low accuracy, overfitting, and poor generalization ability. The speed response under the proposed controller is faster in terms of rising and settling time. The dynamic speed response of the proposed controller is also superior to that of the ANN-PI controller. The performance of the proposed controller was compared for TIM speed control with an ANN-PI controller via simulations in SIMULINK.


Author(s):  
Hasif Aziri ◽  
Fizatul Aini Patakor ◽  
Marizan Sulaiman ◽  
Zulhisyam Salleh

<span>This paper presents the comparative performances of Indirect Field Oriented Control (IFOC) for the three-phase induction motor. Recently, the interest of widely used the induction motor at industries because of reliability, ruggedness and almost free in maintenance. Thus, the IFOC scheme is employed to control the speed of induction motor. Therefore, P and PI controllers based on IFOC approach are analyzed at differences speed commands with no load condition. On the other hand, the PI controller is tuned based on Ziegler-Nichols method by using PSIM software which is user-friendly for simulations, design and analysis of motor drive, control loop and the power converter in power electronics studies. Subsequently, the simulated of P controller results are compared with the simulated of PI controller results at difference speed commands with no load condition. Finally, the simulated results of speed controllers are compared with the experimental results in order to explore the performances of speed responses by using IFOC scheme for three-phase induction motor drives.</span>


Author(s):  
Indra Ferdiansyah ◽  
Era Purwanto ◽  
Novie Ayub Windarko

This paper propose about using PID control system based on Kp, Ki, and Kd parameter determination with scheduling process from fuzzy logic. Control system is used to arrange speed of three phase induction motor using IFOC method. This method can be minimized the main problem from speed control of induction motor which is a transient condition. The robustness validation from this system use testing process of dynamic speed which is compared with the other control system to know the system performance in transient condition such as (rise time, overshoot, undershoot and settling time). The result shows using the proposed system has better performance responses which is requiring 0.001 seconds time in transient condition up to steady state condition without overshoot and undershoot problem.


Sign in / Sign up

Export Citation Format

Share Document