Conformal Fractional ((D_ξ^α G(ξ))/G(ξ) )- Expansion Method and Its Applications for Solving the Nonlinear Fractional Sharma-Tasso-Olver equation
In this article, we generalize the ((G^' (ξ))/G(ξ) )- expansion method which is one of the most important methods to finding the exact solutions of nonlinear partial differential equations. The new generalized method, named conformal fractional ((D_ξ^α G(ξ))/G(ξ) )-expansion method, takes advantage of Katugampola’s fractional derivative to create many useful traveling wave solutions of the nonlinear conformal fractional Sharma-Tasso-Olver equation. The obtained solutions have been articulated by the hyperbolic, trigonometric and rational functions with arbitrary constants. These solutions are algebraically verified using Maple and their physical characteristics are illustrated in some special cases.