scholarly journals Exact Solutions of the Kudryashov-Sinelshchikov Equation Using the MultipleG′/G-Expansion Method

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Yinghui He ◽  
Shaolin Li ◽  
Yao Long

Exact traveling wave solutions of the Kudryashov-Sinelshchikov equation are studied by theG′/G-expansion method and its variants. The solutions obtained include the form of Jacobi elliptic functions, hyperbolic functions, and trigonometric and rational functions. Many new exact traveling wave solutions can easily be derived from the general results under certain conditions. These methods are effective, simple, and many types of solutions can be obtained at the same time.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Wafaa M. Taha ◽  
M. S. M. Noorani

The(G’/G)-expansion method is proposed for constructing more general exact solutions of the nonlinear(2+1)-dimensional equation generated by the Jaulent-Miodek Hierarchy. As a result, when the parameters are taken at special values, some new traveling wave solutions are obtained which include solitary wave solutions which are based from the hyperbolic functions, trigonometric functions, and rational functions. We find in this work that the(G’/G)-expansion method give some new results which are easier and faster to compute by the help of a symbolic computation system. The results obtained were compared with tanh method.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Huizhang Yang ◽  
Wei Li ◽  
Biyu Yang

New exact traveling wave solutions of a higher-order KdV equation type are studied by the(G′/G)-expansion method, whereG=G(ξ)satisfies a second-order linear differential equation. The traveling wave solutions are expressed by the hyperbolic functions, the trigonometric functions, and the rational functions. The property of this method is that it is quite simple and understandable.


2021 ◽  
Vol 2 (5) ◽  
pp. 1-8
Author(s):  
Alaaeddin Amin Moussa ◽  
Lama Abdulaziz Alhakim

In this article, we generalize the ((G^' (ξ))/G(ξ) )- expansion method which is one of the most important methods to finding the exact solutions of nonlinear partial differential equations. The new generalized method, named conformal fractional ((D_ξ^α G(ξ))/G(ξ) )-expansion method, takes advantage of Katugampola’s fractional derivative to create many useful traveling wave solutions of the nonlinear conformal fractional Sharma-Tasso-Olver equation. The obtained solutions have been articulated by the hyperbolic, trigonometric and rational functions with arbitrary constants. These solutions are algebraically verified using Maple and their physical characteristics are illustrated in some special cases.


2018 ◽  
Vol 32 (20) ◽  
pp. 1850234 ◽  
Author(s):  
A. H. Abdel Kader ◽  
M. S. Abdel Latif

In this paper, using Lie symmetry method, we obtain some new exact traveling wave solutions of the Camassa–Holm–Degasperis–Procesi (CH–DP) equation. Some new bright and dark soliton solutions are obtained. Also, some new doubly periodic solutions in the form of Jacobi elliptic functions and Weierstrass elliptic functions are obtained.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Sekson Sirisubtawee ◽  
Sanoe Koonprasert

We apply the G′/G2-expansion method to construct exact solutions of three interesting problems in physics and nanobiosciences which are modeled by nonlinear partial differential equations (NPDEs). The problems to which we want to obtain exact solutions consist of the Benny-Luke equation, the equation of nanoionic currents along microtubules, and the generalized Hirota-Satsuma coupled KdV system. The obtained exact solutions of the problems via using the method are categorized into three types including trigonometric solutions, exponential solutions, and rational solutions. The applications of the method are simple, efficient, and reliable by means of using a symbolically computational package. Applying the proposed method to the problems, we have some innovative exact solutions which are different from the ones obtained using other methods employed previously.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhao Li ◽  
Tianyong Han

In this study, the exact traveling wave solutions of the time fractional complex Ginzburg-Landau equation with the Kerr law and dual-power law nonlinearity are studied. The nonlinear fractional partial differential equations are converted to a nonlinear ordinary differential equation via a traveling wave transformation in the sense of conformable fractional derivatives. A range of solutions, which include hyperbolic function solutions, trigonometric function solutions, and rational function solutions, is derived by utilizing the new extended G ′ / G -expansion method. By selecting appropriate parameters of the solutions, numerical simulations are presented to explain further the propagation of optical pulses in optic fibers.


2020 ◽  
Vol 8 (1) ◽  
pp. 14 ◽  
Author(s):  
Nur Hasan Mahmud Shahen ◽  
Foyjonnesa . ◽  
Md. Habibul Bashar

In this paper, the -expansion method has been applied to find the new exact traveling wave solutions of the nonlinear evaluation equations (NLEEs) by utilizing 3rd-order Klein–Gordon Equation (KFGE). With the collaboration of symbolic commercial software maple, the competence of this method for inventing these exact solutions has been more exhibited. As an upshot, some new exact solutions are obtained and signified by hyperbolic function solutions, different combinations of trigonometric function solutions, and exponential function solutions. Moreover, the -expansion method is a more efficient method for exploring essential nonlinear waves that enrich a variety of dynamic models that arises in nonlinear fields. All sketching is given out to show the properties of the innovative explicit analytic solutions. Our proposed method is directed, succinct, and reasonably good for the various nonlinear evaluation equations (NLEEs) related treatment and mathematical physics also. 


2012 ◽  
Vol 4 (1) ◽  
pp. 122-130 ◽  
Author(s):  
Xiaohua Liu ◽  
Weiguo Zhang ◽  
Zhengming Li

AbstractIn this work, the improved (G′/G)-expansion method is proposed for constructing more general exact solutions of nonlinear evolution equation with the aid of symbolic computation. In order to illustrate the validity of the method we choose the RLW equation and SRLW equation. As a result, many new and more general exact solutions have been obtained for the equations. We will compare our solutions with those gained by the other authors.


Sign in / Sign up

Export Citation Format

Share Document