scholarly journals Nuclear Gamma-soft Character in ¹²⁸Ba

2021 ◽  
Vol 3 (3) ◽  
pp. 16-20
Author(s):  
I. Hossain ◽  
Hewa Y. Abdullah ◽  
I. M. Ahmed ◽  
Fadhil I. Sharrad

We report the properties of gamma soft O(6) of 128Ba isotones with neutron N = 72 using Interacting Vector Boson Model (IVBM), interacting Boson Model (IBM-1), Bohr-Mottelson Model (BM), and Doma-El-Gendy (D-G) relation. The first energy level ( ) and ratio  have been investigated which show that 128Ba has gamma-soft character. The curves Eγ/Vs.J of E-GOS of even 128Ba nucleus were compared with the standard curves of vibrational, gamma soft and rotational limits. The staggering factors were studied of available measured data of 128Ba nucleus. The yrast levels of this isotope are calculated by the model of VBMI, IBM-1, BM and D-G and they were compared by measured data. The negative parity band of 128Ba was calculated by IVBM and BM model and compared with experimental values.

2019 ◽  
Vol 11 ◽  
Author(s):  
Dennis Bonatsos ◽  
C. Daskaloyannis ◽  
S. B. Drenska ◽  
N. Karoussos ◽  
N. Minkov ◽  
...  

The Δ I = 1 staggering (odd-even staggering) in octupole bands of light actinides. is found to exhibit a "beat" behaviour as a function of the angular momentum J, forcing us to revise the traditional belief that this staggering decreases gradually to, zero and then remains at this zero value. Various algebraic models (spf-Interacting Boson Model, spdf-IBM, Vector Boson Model, Nuclear Vibron Model) predict in their su(3) limits constant staggering for this case, being thus unable to describe the "beat" behaviour. An explanation of the "beat" behaviour is given in terms of two Dunham expansions (expansions in terms of powers of I ( I + 1) ) with slightly different sets of coefficients for the ground state band and the negative parity band, the difference in the values of the coefficients being attributed to Coriolis couplings to other negative parity bands.


1987 ◽  
Vol 35 (2) ◽  
pp. 844-847 ◽  
Author(s):  
P. B. Semmes ◽  
A. F. Barfield ◽  
B. R. Barrett ◽  
J. L. Wood

2003 ◽  
Vol 67 (5) ◽  
Author(s):  
P. Petkov ◽  
A. Dewald ◽  
A. Fitzler ◽  
T. Klug ◽  
G. de Angelis ◽  
...  

2016 ◽  
Vol 25 (11) ◽  
pp. 1650089 ◽  
Author(s):  
M. A. Jafarizadeh ◽  
A. Jalili Majarshin ◽  
N. Fouladi

In order to investigate negative parity states, it is necessary to consider negative parity-bosons additionally to the usual [Formula: see text]- and [Formula: see text]-bosons. The dipole and octupole degrees of freedom are essential to describe the observed low-lying collective states with negative parity. An extended interacting boson model (IBM) that describes pairing interactions among s, p, d and f-boson based on affine [Formula: see text] Lie algebra in the quantum phase transition (QPT) field, such as spd-IBM, sdf-IBM and spdf-IBM, is composed based on algebraic structure. In this paper, a solvable extended transitional Hamiltonian based on affine [Formula: see text] Lie algebra is proposed to describe low-lying positive and negative parity states between the spherical and deformed gamma-unstable shape. Three model of new algebraic solution for even–even nuclei are introduced. Numerical extraction to low-lying energy levels and transition rates within the control parameters of this evaluated Hamiltonian are presented for various [Formula: see text] values. We reproduced the positive and negative parity states and our calculations suggest that the results of spdf-IBM are better than spd-IBM and sdf-IBM in this literature. By reproducing the experimental results, the method based on signature of the phase transition such as level crossing in the lowest excited states is used to provide a better description of Ru isotopes in this transitional region.


1971 ◽  
Vol 49 (3) ◽  
pp. 355-359 ◽  
Author(s):  
R. H. Spear ◽  
J. E. Cairns ◽  
R. V. Elliott ◽  
J. A. Kuehner ◽  
A. A. Pilt

Linear polarization studies of gamma radiation from the reaction 26Mg(α,nγ)29Si show that the parity of the 3.623 MeV [Formula: see text] state is negative, and that the spin and parity of the 5.255 MeV state are [Formula: see text] or [Formula: see text]. A previously reported unique [Formula: see text] assignment for the latter state is not confirmed.


2020 ◽  
Vol 928 (7) ◽  
pp. 072124
Author(s):  
Yasir Yahya Kassim ◽  
Mushtaq Abed Al-Jubbori ◽  
Imad Mamdouh Ahmed ◽  
Hewa Y. Abdullah ◽  
Fadhil I. Sharrad

Abstract The properties of 170 Er, 172Yb, 174Hf, and 176Wisotones have been studied and their energy states calculated. To identify the properties of each isotone, the values of the first excited states, E 2 1 + and the ratio of the second excited states to the first excited states, R 4 / 2 = E 4 1 + / E 2 1 + for all nuclei under consideration were adopted. To determine the properties of each nucleus, the relationship between the moment of inertia 2𝜗/ℏ 2 and the square of the angular frequency, ℏ 2 𝜔 2, the relationship between successive excited states to those preceding them r ( I + 2 ) I ) and the ΔI = 1 staggering between the GSB and the NPB states were studied for all states of 170Er, 172Yb, 174Hf, and 176W isotones. After identifying the properties of each isotone, the rotational limit in the interacting boson model IBM-1 and the IVBM model was used to calculate the energy states for each isotone and the results were compared with the experimental values. and good agreement was observed with some exception. The inaccuracy of some calculations in the IBM-1 results from the lying of some high states out the range of the rotational properties that were used.


1974 ◽  
Vol 33 (2) ◽  
pp. 105-108 ◽  
Author(s):  
B. Haas ◽  
P. Taras

2019 ◽  
Vol 28 (12) ◽  
pp. 1950107
Author(s):  
Hussein N. Qasim ◽  
Falih H. Al-Khudair

The low-lying positive and negative parity states of even–even [Formula: see text]Nd isotopes are studied using the interacting boson model (IBM). The negative parity states are involved within the IBM model by adding a single angular momentum ([Formula: see text]) boson with intrinsic negative parity [Formula: see text]-boson to [Formula: see text] and [Formula: see text]-bosons model space. For these nuclei, the potential energy surfaces [Formula: see text], transition probability [Formula: see text], [Formula: see text] and [Formula: see text] are calculated. Phase transition from the [Formula: see text] limit to the [Formula: see text] limit is observed in the chain and the critical point has been determined for [Formula: see text]Nd isotope. It is found that the calculated positive and negative parity energy spectra of Nd-isotopes agree well with the experimental data.


1976 ◽  
Vol 277 (2) ◽  
pp. 113-115 ◽  
Author(s):  
D. R. Zolnowski ◽  
H. Beuscher ◽  
T. T. Sugihara

Sign in / Sign up

Export Citation Format

Share Document