scholarly journals Stakeholder Involvement in Upscaling of Soil Fertility Research Output in Tharaka-Nithi County, Kenya

2021 ◽  
Vol 2 (Fall/Winter) ◽  
pp. 1-22
Author(s):  
Serah Kimaru-Muchai

Food insecurity in Sub-Saharan Africa has prompted a lot of research in the development of soil fertility technologies; however, few of the recommendations from soil fertility management research have been put into use by the target end-users. The objective of the study was to investigate information exchange pathways used by researchers in upscaling of soil fertility in Maara and Mbeere South Sub-counties in Kenya. Structured questionnaires were used to collect information from 22 researchers and 240 farmers. Data was analyzed using descriptive statistics like frequency, mean, and percentages, while Chi-square, Kendal's correlation coefficient was used to test the magnitude of the relationship between dependent and independent variables. Inadequate resources materials and poor networking among stakeholders were among the challenges that the researchers faced in the dissemination of their research outputs. The findings also showed that there was a positive and significant correlation between farm size and the mass media approach. Researchers and extension agents should use a mixed approach; this is the use of combined individual, group, and mass media approaches to cater to the different preferences based on socio-economic characteristics of farmers.

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253412
Author(s):  
Segla Roch Cedrique Zossou ◽  
Patrice Ygue Adegbola ◽  
Brice Tiburce Oussou ◽  
Gustave Dagbenonbakin ◽  
Roch Mongbo

The decline of soil fertility is a major constraint which results in lower levels of crop productivity, agricultural development and food security in Sub-Saharan Africa. This study is the first to perform a focalized investigation on the most interesting technological profiles to offer to each category of producers in Benin agricultural development hubs (ADHs) using the stated preference method, more precisely, the improved choice experiment method. The investigation focused on 1047 sampled plots from 962 randomly selected producers in villages of the Smallholder Agricultural Productivity Enhancement Program in Sub-Saharan Africa of the ADHs. An analysis of the experimental choice data with the endogenous attribute attendance and the latent class models was carried out to account for the attribute non-attendance phenomenon and the heterogeneity of the producers’ preferences. However, three classes of producer with different socio-economic, demographic, and soil physicochemical characteristics were identified. Thus, the heterogeneity of preferences was correlated with the attributes linked to the cost, sustainability, and frequency of plot maintenance. All producers, regardless of the ADHs, had a strong attachment to accessibility of technologies with short time restoration of soil fertility, and the ability to obtain additional benefits. These latest attributes, added to that relating to cost, tended to have a low probability of rejection in the decision-making process. These results have implications for local decision-makers facing the complex problem of resolving land degradation and local economic development challenges. The generalizability of these findings provides useful insight and direction for future studies in Sub-Saharan Africa.


2017 ◽  
Author(s):  
Henk Mutsaers ◽  
Danny Coyne ◽  
Stefan Hauser ◽  
Jeroen Huising ◽  
Alpha Kamara ◽  
...  

2017 ◽  
pp. 205-231 ◽  
Author(s):  
Cargele Masso ◽  
Generose Nziguheba ◽  
James Mutegi ◽  
Corinne Galy-Lacaux ◽  
John Wendt ◽  
...  

SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 491-508 ◽  
Author(s):  
B. Vanlauwe ◽  
K. Descheemaeker ◽  
K. E. Giller ◽  
J. Huising ◽  
R. Merckx ◽  
...  

Abstract. Intensification of smallholder agriculture in sub-Saharan Africa is necessary to address rural poverty and natural resource degradation. Integrated soil fertility management (ISFM) is a means to enhance crop productivity while maximizing the agronomic efficiency (AE) of applied inputs, and can thus contribute to sustainable intensification. ISFM consists of a set of best practices, preferably used in combination, including the use of appropriate germplasm, the appropriate use of fertilizer and of organic resources, and good agronomic practices. The large variability in soil fertility conditions within smallholder farms is also recognized within ISFM, including soils with constraints beyond those addressed by fertilizer and organic inputs. The variable biophysical environments that characterize smallholder farming systems have profound effects on crop productivity and AE, and targeted application of agro-inputs and management practices is necessary to enhance AE. Further, management decisions depend on the farmer's resource endowments and production objectives. In this paper we discuss the "local adaptation" component of ISFM and how this can be conceptualized within an ISFM framework, backstopped by analysis of AE at plot and farm level. At plot level, a set of four constraints to maximum AE is discussed in relation to "local adaptation": soil acidity, secondary nutrient and micronutrient (SMN) deficiencies, physical constraints, and drought stress. In each of these cases, examples are presented whereby amendments and/or practices addressing these have a significantly positive impact on fertilizer AE, including mechanistic principles underlying these effects. While the impact of such amendments and/or practices is easily understood for some practices (e.g. the application of SMNs where these are limiting), for others, more complex processes influence AE (e.g. water harvesting under varying rainfall conditions). At farm scale, adjusting fertilizer applications to within-farm soil fertility gradients has the potential to increase AE compared with blanket recommendations, in particular where fertility gradients are strong. In the final section, "local adaption" is discussed in relation to scale issues and decision support tools are evaluated as a means to create a better understanding of complexity at farm level and to communicate appropriate scenarios for allocating agro-inputs and management practices within heterogeneous farming environments.


2014 ◽  
Vol 1 (1) ◽  
pp. 1239-1286 ◽  
Author(s):  
B. Vanlauwe ◽  
K. Descheemaeker ◽  
K. E. Giller ◽  
J. Huising ◽  
R. Merckx ◽  
...  

Abstract. Intensification of smallholder agriculture in sub-Saharan Africa is necessary to address rural poverty and natural resource degradation. Integrated Soil Fertility Management (ISFM) is a means to enhance crop productivity while maximizing the agronomic efficiency (AE) of applied inputs, and can thus contribute to sustainable intensification. ISFM consists of a set of best practices, preferably used in combination, including the use of appropriate germplasm, the appropriate use of fertilizer and of organic resources, and good agronomic practices. The large variability in soil fertility conditions within smallholder farms is also recognised within ISFM, including soils with constraints beyond those addressed by fertilizer and organic inputs. The variable biophysical environments that characterize smallholder farming systems have profound effects on crop productivity and AE and targeted application of limited agro-inputs and management practices is necessary to enhance AE. Further, management decisions depend on the farmer's resource endowments and production objectives. In this paper we discuss the "local adaptation" component of ISFM and how this can be conceptualized within an ISFM framework, backstopped by analysis of AE at plot and farm level. At plot level, a set of four constraints to maximum AE is discussed in relation to "local adaptation": soil acidity, secondary nutrient and micro-nutrient (SMN) deficiencies, physical constraints, and drought stress. In each of these cases, examples are presented whereby amendments and/or practices addressing these have a significantly positive impact on fertilizer AE, including mechanistic principles underlying these effects. While the impact of such amendments and/or practices is easily understood for some practices (e.g., the application of SMNs where these are limiting), for others, more complex interactions with fertilizer AE can be identified (e.g., water harvesting under varying rainfall conditions). At farm scale, adjusting fertilizer applications within-farm soil fertility gradients has the potential to increase AE compared with blanket recommendations, in particular where fertility gradients are strong. In the final section, "local adaption" is discussed in relation to scale issues and decision support tools are evaluated as a means to create a better understanding of complexity at farm level and to communicate best scenarios for allocating agro-inputs and management practices within heterogeneous farming environments.


Sign in / Sign up

Export Citation Format

Share Document