scholarly journals A hybrid solar panel maximum power point search method that uses light and temperature sensors in real shading conditions

Author(s):  
J. Mroczka ◽  
M. Ostrowski
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ali Kargarnejad ◽  
Mohsen Taherbaneh ◽  
Amir Hosein Kashefi

Tracking maximum power point of a solar panel is of interest in most of photovoltaic applications. Solar panel modeling is also very interesting exclusively based on manufacturers data. Knowing that the manufacturers generally give the electrical specifications of their products at one operating condition, there are so many cases in which the specifications in other conditions are of interest. In this research, a comprehensive one-diode model for a solar panel with maximum obtainable accuracy is fully developed only based on datasheet values. The model parameters dependencies on environmental conditions are taken into consideration as much as possible. Comparison between real data and simulations results shows that the proposed model has maximum obtainable accuracy. Then a new fuzzy-based controller to track the maximum power point of the solar panel is also proposed which has better response from speed, accuracy and stability point of view respect to the previous common developed one.


2014 ◽  
Vol 21 (4) ◽  
pp. 733-740 ◽  
Author(s):  
Janusz Mroczka ◽  
Mariusz Ostrowski

Abstract Photovoltaic panels have a non-linear current-voltage characteristics to produce the maximum power at only one point called the maximum power point. In the case of the uniform illumination a single solar panel shows only one maximum power, which is also the global maximum power point. In the case an irregularly illuminated photovoltaic panel many local maxima on the power-voltage curve can be observed and only one of them is the global maximum. The proposed algorithm detects whether a solar panel is in the uniform insolation conditions. Then an appropriate strategy of tracking the maximum power point is taken using a decision algorithm. The proposed method is simulated in the environment created by the authors, which allows to stimulate photovoltaic panels in real conditions of lighting, temperature and shading.


Solar photovoltaic (PV) systems are gaining importance increasingly as it directly converts solar radiation into electrical energy which is renewable and environment friendly. Where it has a numerous advantage, some disadvantages are also there like its dependency on environmental conditions. The power developed by solar panel decreases if it does not get uniform radiation. Sometimes due to nearby buildings, passing clouds etc. PV module might be partially shaded because of which power output of solar panel may get decrease this is called partial shading conditions. It causes significant reduction in the system power output. To overcome this, maximum power point-tracking under partial shading condition by continuous duty cycle variation schemes have been proposed, in which dc–dc boost converters are connected to PV module to enable maximum power extraction. In this paper a new method of Duty Sweep Maximum Power Point Tracking (DSMPPT) has been implanted, which is capable of tracking the Global Maximum Power Point (GMPP) in the presence of other local maxima. The proposed scheme tracks Maximum Power Point (MPP) by continuous variation of converter’s duty cycle without the use of costly components such as signal converters and microprocessors thereby increasing the compactness of the system.


Sign in / Sign up

Export Citation Format

Share Document