scholarly journals PM10 and CO Dispersion Modeling of Emissions from the Four Thermal Power Plants in Mashhad-Iran

2019 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Mohammad Amir Moharreri ◽  
Foroozan Arkian ◽  
Kamran Lari ◽  
Gholam Reza Salehi
2007 ◽  
Vol 133 (12) ◽  
pp. 1088-1097
Author(s):  
Gurdeep Singh ◽  
S. K. Gupta ◽  
Ritesh Kumar ◽  
M. Sunderarajan

Author(s):  
Jose´ I. Huertas ◽  
Mauricio Y. Carmona ◽  
Diego Moreno

The Mexican environmental authority requires that thermal power plants operate 3 or 4 air quality monitoring stations around its main stack to ensure that pollutant concentration levels are always below the maximum allowable. However the high cost of these stations and the cost of their maintenance have made this regulation economically unreasonable. It has been proposed to reduce the number of monitoring stations to one and substitute the other stations by an accurate atmospheric dispersion model that allows the permanent surveillance of the surface pollutant concentration levels around the thermoelectric power plants. CALPUFF, an advanced air pollution dispersion modeling system was implemented for the special case of the Mexican thermal power plants. Experimental work was conducted to verify the correct implementation of the model. This paper describes the main results obtained during the development of this work.


OSEANA ◽  
2019 ◽  
Vol 44 (1) ◽  
pp. 26-37
Author(s):  
Dewi Surinati ◽  
Muhammad Ramadhani Marfatah

HYDRODYNAMICS EFFECT TO THE DISTRIBUTION OF THERMAL WASTE IN THE OCEAN. The ocean is a thermal waste disposal site derived from thermal power plants. The ecosystems and marine biota could be disrupted even massive damaged if this waste was disposed into the ocean without proper processing. All activities in the ocean need a well understanding of hydrodynamics to avoid or minimize any negative effects that may occur. It needs dispersion modeling of heat water prior to the construction of the power plant in order to reduce the impact of environmental damage.


2019 ◽  
Vol 12 (1) ◽  
pp. 22-28
Author(s):  
V. Ye. Mikhailov ◽  
S. P. Kolpakov ◽  
L. A. Khomenok ◽  
N. S. Shestakov

One of the most important issues for modern domestic power industry is the creation and further widespread introduction of solid propellant energy units for super-critical steam parameters with high efficiency (43–46%) and improved environmental parameters. This will significantly reduce the use of natural gas.At the same time, one of the major drawbacks of the operation of pulverized coal power units is the need to use a significant amount of fuel oil during start-up and shutdown of boilers to stabilize the burning of the coal torch in the variable boiler operating modes.In this regard, solid fuel TPPs need to be provided with fuel oil facilities, with all the associated problems to ensure the performance (heating of fuel oil in winter), reliability and safety. All of the above problems increase both the TPP capital construction costs, and the electricity generating cost.A practical solution to the above problems at present is the use of a plasma technology for coal torch ignition based on thermochemical preparation of fuel for combustion. The materials of the developments of JSC “NPO CKTI” on application of plasmatrons in boilers of thermal power plants at metallurgical complexes of the Russian Federation are also considered.Plasma ignition systems for solid fuels in boilers were developed by Russian specialists and were introduced at a number of coal-fi red power plants in the Russian Federation, Mongolia, North Korea, and Kazakhstan. Plasma ignition of solid fuels is widely used in China for almost 30% of power boilers.The introduction of plasma-energy technologies will improve the energy efficiency of domestic solid-fuel thermal power plants and can be widely implemented in the modernization of boilers.During the construction of new TPPs, the construction of fuel oil facilities can be abandoned altogether, which will reduce the capital costs of the construction of thermal power plants, reduce the construction footprint, and increase the TPP safety.


Author(s):  
Ye. G. Polenok ◽  
S. A. Mun ◽  
L. A. Gordeeva ◽  
A. A. Glushkov ◽  
M. V. Kostyanko ◽  
...  

Introduction.Coal dust and coal fi ring products contain large amounts of carcinogenic chemicals (specifically benz[a]pyrene) that are different in influence on workers of coal mines and thermal power plants. Specific immune reactions to benz[a]pyrene therefore in these categories of workers can have specific features.Objective.To reveal features of antibodies specifi c to benz[a]pyrene formation in workers of coal mines and thermal power plants.Materials and methods.The study covered A and G class antibodies against benz[a]pyrene (IgA-Bp and IgG-Bp) in serum of 705 males: 213 donors of Kemerovo blood transfusion center (group 1, reference); 293 miners(group 2) and 199 thermal power plant workers (group 3). Benz[a]pyrene conjugate with bovine serum albumin as an adsorbed antigen was subjected to immune-enzyme assay.Results.IgA-Bp levels in the miners (Me = 2.7) did not differ from those in the reference group (Me = 2.9), but in the thermal power plant workers (Me = 3.7) were reliably higher than those in healthy men and in the miners (p<0.0001). Levels of IgG-Bp in the miners (Me = 5.0) appeared to be lower than those in the reference group (Me = 6.4; (p = 0.05). IgG-Bb level in the thermal power plantworkers (Me = 7.4) exceeded the parameters in the healthy donors and the miners (p<0.0001). Non-industrial factors (age and smoking) appeared tohave no influence on specific immune reactions against benz[a]pyrene in the miners and the thermal power plant workers.Conclusions.Specific immune reactions against benz[a]pyrene in the miners and the thermal power plant workers are characterized by peculiarities: the miners demonstrate lower levels of class A serum antibodies to benz[a]pyrene; the thermal power plant workers present increased serum levels of class G antibodies to benz[a]pyrene. These peculiarities result from only the occupational features, but do not depend on such factors as age, smoking and length of service at hazardous production. It is expedient to study specific immune reactions to benz[a]pyrene in workers of coal mines and thermal power plants, to evaluate individual oncologic risk and if malignancies occur.


Sign in / Sign up

Export Citation Format

Share Document