scholarly journals Role of Piper cubeba and Zingiber officinale essential oils in maize weevil, Sitophilus zeamais (Motschulsky) management

Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 532
Author(s):  
William R. Patiño-Bayona ◽  
Leidy J. Nagles Galeano ◽  
Jenifer J. Bustos Cortes ◽  
Wilman A. Delgado Ávila ◽  
Eddy Herrera Daza ◽  
...  

Chemical control of the maize weevil (Sitophilus zeamais) has been ineffective and presents serious collateral damage. Among plant-derived insecticides, essential oils (EOs) are suitable candidates to control this stored products pest. In this work, the insecticidal activities of 45 natural EOs against S. zeamais adults were screened, and the most promising ones (24 EOs) were characterized by GC–MS. The repellent and toxic effects (contact and fumigant) of these 24 EOs were determined, and by a cluster analysis they were classified into two groups considering its fumigant activity and contact toxicity. For the EOs with the highest fumigant potential (14 oils) and their main active constituents (17 compounds), lethal concentrations were determined. The most active EOs were those obtained from L. stoechas and L. alba, with LC50 values of 303.4 and 254.1 µL/L air and characterized by a high content of monoterpenes. Regarding the major compounds, the oxygenated monoterpenes R-(+)-pulegone (LC50 = 0.580 mg/L air), S-(-)-pulegone (LC50 = 0.971 mg/L air) and R-(-)-carvone (LC50 = 1.423 mg/L air) were the most active, as few variations in their concentrations significantly increased insect mortality.


2009 ◽  
Vol 70 (6) ◽  
pp. 751-758 ◽  
Author(s):  
Donald A. Ukeh ◽  
Michael A. Birkett ◽  
John A. Pickett ◽  
Alan S. Bowman ◽  
A. Jennifer Mordue

1992 ◽  
Vol 30 (1) ◽  
pp. 9-16 ◽  
Author(s):  
J. W. Mwangi ◽  
I. Addae-Mensah ◽  
G. Muriuki ◽  
R. Munavu ◽  
W. Lwande ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-5
Author(s):  
K. Bhusal ◽  
D. Khanal

Experiments were conducted to find out the role of maize weevil, Sitophilus zeamais Motsch. on spread of green fungus, Aspergillus section flavi, in different varieties of stored maize in laboratory in 2016. Lab experiment was conducted to find the role of weevil on spread of A. flavus on five main varieties of maize grown at Nepal in split plot design, namely, Arun-2, Arun-4, Manakamana-1, Manakamana-3, and Rampur composite with three replications at NAST, Khumaltar, from August to September 2016. One hundred grams of each maize variety was exposed to weevil along with fungus and with fungus only to see the spread of the fungus under presence and absence of weevil. Among the tested five maize varieties, the lowest infestation was observed on Rampur Composite (14.99%) while it was the highest on Manakamana-3 (87.70%). The highest mean infestation (75.58%) was found under weevil released condition while it was lower (62.16%) under nonreleased condition. In presence of weevil, the infestation of the fungus increased and in their absence the infestation was low which signifies the role of weevil in fungal spread. All indices indicate that Rampur composite is the best variety among the five tested varieties in terms of storage under the presence of fungus and weevils. This study also indicates ample scope for further study on different varieties of maize under several storage conditions.


2021 ◽  
Vol 38 (1) ◽  
pp. 38-49
Author(s):  
Mukesh K Chaubey

Inappropriate use of synthetic insecticides in pest management programs contribute in ozone depletion, neurotoxicity, carcinogenicity, teratogenicity, mutagenesis and resistance. These negative outcomes have diverted attention towards the use of plant products in insect’s population management. In this study, dill (Anethum graveolens) and star anise (Ilicium verum) essential oils were isolated by hydrodistillation method using clevenger apparatus, and evaluated for repellent, toxic and oviposition inhibitory potential against maize weevil Sitophilus zeamais (Coleoptera: Curculionidae) by fumigation and contact methods. In toxicity assay by fumigation method, median lethal concentrations (LC50) recorded were 0.316 and 0.243 μlcm-3 air; 0.362 and 0.284 μlcm-3; and 0.497 and 0.418 μlcm-3 of A. graveolens and I. verum oils and pure limonene after 24 and 48h exposure to S. zeamais adults, respectively. In contact toxicity assay, LC50 were 0.219 and 0.159 μlcm-2 area; 0.269 and 0.226 μlcm-2; and 0.567 and 0.386 μlcm-2 of A. graveolens and I. verum oils and pure limonene after 24 and 48 h exposure to S. zeamais adults, respectively. Both A. graveolens and I. verum oils and limonene reduced progeny production and acetylcholinesterase activity in S. zeamais adults when fumigated with sub-lethal concentrations. The outcomes of this study will help in preparation of essential oil based formulations for stored grain insect pest management.


Sign in / Sign up

Export Citation Format

Share Document