Study of operation of natural draft cooling tower, with its hydraulic load reduced

2020 ◽  
Vol 12 (4) ◽  
pp. 268-273
Author(s):  
A. I. Badriev ◽  
V. N. Sharifullin ◽  
S. M. Vlasov ◽  
N. D. Chichirova

A survey has been held of a BG-2600 natural draft cooling tower of thermal power plants, in the reduced hydraulic load mode. The technical condition of the reinforced concrete tower, the skeleton frame, the irrigation device, the water distribution system and the air duct windows has been inspected. Defects of the cooling tower structural elements have been identified. These include: horizontal sagging of the irrigation device, considerable gaps between its blocks and their partial destruction, problems with nozzles and structures of air duct windows. The identified defects are attributed to the causes of irregular water and air flows. The degree of irregularity of irrigation density and air flow in the tower has been estimated. Over the cross-section of the tower, a significant standard deviation from the average value or irregularity of irrigation density (30%) and irregularity of air flow (23.5%) has been established. The temperature and cooling curves of the cooling tower have been plotted taking into account irregularities of irrigation density and air flow rate. Normal and defective sections of the cooling tower have been identified based on working characteristics. Standard characteristics of the BG-2600 cooling tower have been plotted based on a nomogram. A comparative analysis of the working and standard characteristics has been held. The degree of influence produced by irregularities in water and air flows on the cooling process has been established. It has been found that the established irregularities in water and air flows result in a decrease in the temperature difference on average by 2°C and a decrease of cooling capacity by 7.3 Mcal/m2∙hr with a hydraulic load of 8840 m3/h. The results indicate a significant impact produced by irregularities of flows on cooling effect. The tasks to eliminate irregularities in distribution of flows as well as to increase the tower cooling efficiency have been formulated.

Author(s):  
Stefan aus der Wiesche

Abstract Flexible plant operation and rapid load changes become major issues for steam turbine operation. In thermal power plants, the steam turbine performance is closely related to the condenser, and an accurate prediction of coolant temperature as function of changing weather conditions is necessary in order to optimize power plant fleet operation. In this contribution, a one-dimensional model for simulating the performance of large natural draft wet cooling towers is presented. The evaporation zone model rests on the evaporative cooling theory developed by Merkel and Poppe. The off-design behavior of the cooling tower, that is relevant to part load performance, is modeled by an empirical power-law approach. A user-friendly method is presented in order to identify required model parameters by means of already available power plant data. The simulation tool can be employed easily for existing power plants for which the original cooling tower design and construction data lost their validity. The outcome of the present calculation method is successfully compared with field data from representative cooling towers at Middle-European sites.


2020 ◽  
Vol 170 ◽  
pp. 01009
Author(s):  
Akshay S. Dhurandhar ◽  
Amarsingh B. Kanase-Patil

Cooling tower is an indispensable part, used as a direct contact type heat exchanger mainly for evaporative cooling. Cooling tower generally dissipates, remove heat from thermal power plants. In an induced draft cooling tower of counter flow, used for a mini-steam power plant, hot water enters at the top, while the air is introduced at the bottom and exits at the top, air is allowed to come in contact with falling water droplets, causing evaporative cooling. A possibility of desired change with different spray angle, patterns, is tried and analysed. On findings, best suited spray nozzle angle resulted is 90°, and amongst three spray patterns, full cone, hollow cone and spiral type nozzle; full cone nozzle of 90° spray angle helps achieving efficiency up to 82%. The range increases successively from 9.8°C to 15.5°C for FC nozzle, in approach to WBT; the desirable fall of 3.56°C is attained with effectiveness of 81.63%.


Sign in / Sign up

Export Citation Format

Share Document