Flexural Behavior of Reinforced Concrete Circular Columns Strengthened with Hybrid FRP Sheet

2017 ◽  
Vol 5 (3) ◽  
pp. 927-934
Author(s):  
Jong-Myeong Beak ◽  
Jae-Il Sim ◽  
Sang-Su Ha ◽  
Eun Kyum Kim
2014 ◽  
Vol 92 ◽  
pp. 74-83 ◽  
Author(s):  
Wanchai Yodsudjai

The applications of using fly ash-based geopolymer as a structural member and a repair materials in reinforced concrete structure was conducted. The optimum mix proportion of fly ash-based geopolymer concrete using for structural beam and fly ash-based geopolymer mortar using for repair material were developed. The flexural behavior of fly ash-based geopolymer reinforced concrete and the durability aspect namely the corrosion of steel reinforcement were investigated using the electrical acceleration. For the repair purpose, the fundamental properties; that is, compressive strength, flexural strength, bonding strength between fly ash-based geopolymer mortar and mortar substrate, setting time and chloride penetration were investigated. Also, the durability of conventional reinforced concrete beam repaired by the fly ash-based geopolymer mortar comparing with the comercial repair mortar was investigated. The behavior of the fly ash-based geopolymer reinforced concrete beam was similar to that of the conventional reinforced concrete beam; however, the corrosion of the steel reinforcement of the fly ash-based geopolymer reinforced concrete beam was higher than that of the conventional reinforced concrete beam. The fundamental properties of the fly ash-based geopolymer mortar were not different from that of the commercial repair materials; however, the durability of the reinforced concrete beam repaired by the fly ash-based geopolymer mortars performed a little lower than that of repaired with the commercial repair motar and also the control reinforced concrete with no repair. As a result, even there will be still a need of improvement there was a good tendency for using the fly ash-based geopolymer as the structural member and the repair materials.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Chang-Geun Cho ◽  
Bang Yeon Lee ◽  
Yun Yong Kim ◽  
Byung-Chan Han ◽  
Seung-Jung Lee

This paper presents a new reinforced concrete (RC) composite slab system by applying an extruded Ductile Fiber Reinforced Cement Composite (DFRCC) panel. In the proposed composite slab system, the DFRCC panel, which has ribs to allow for complete composite action, is manufactured by extrusion process; then, the longitudinal and transverse reinforcements, both at the bottom and the top, are placed, and finally the topping concrete is placed. In order to investigate the flexural behavior of the proposed composite slab system, a series of bending tests was performed. From the test results, it was found that the extruded DFRCC panel has good deformation-hardening behavior under flexural loading conditions and that the developed composite slab system, applied with an extruded DFRCC panel, exhibits higher flexural performance compared to conventional RC slab system in terms of the stiffness, load-bearing capacity, ductility, and cracking control.


Sign in / Sign up

Export Citation Format

Share Document