steel reinforcement
Recently Published Documents


TOTAL DOCUMENTS

858
(FIVE YEARS 280)

H-INDEX

37
(FIVE YEARS 7)

2022 ◽  
Vol 961 (1) ◽  
pp. 012034
Author(s):  
Ola Mazen Makki ◽  
Hayder M K Al-Mutairee

Abstract Few studies discussed the continuous deep beams CDB behaviour in spite of its great importance in building constructions due to the usual use in bridges and tall buildings as a load distributer. The behaviour of CDB shows a different behaviour when comparing with the simply supported one, so the expected behaviour of SDB does not match with the CDB. So, this paper deals with reviewing the behaviour of CDB in the past researches. It has been concluded that, the CDB resist the applied loads by flexural and shear together, the flexural behaviour appears at the first loading stage then the beam start to resist by shear capacity. The amount of resistance of beam by flexural depends on a/h ratio, main and web steel reinforcement and concrete compressive strength. Flexural behaviour may not appear for very small a/h ratio or over main reinforcement. Also, main steel reinforcement at both top and bottom of beam does not reach to yielding point expected one case, which is, the main steel ratio is less than 0.6%, thereby, tie failure will governs.


2022 ◽  
Vol 961 (1) ◽  
pp. 012070
Author(s):  
Mustafa Kareem Hamzah

Abstract The bridge bent is the most critical structural component of short span bridge that highly affected by different types of loadings. The bent failure has been observed due to in plane and out of plane loadings. Strengthening techniques are utilized for existing bridges. However, a replacement technique can be used for the new bridges to avoid bent failure. Moreover, the effect of combined loading on bent performance need to be evaluated. Therefore, this study assessed the performance of bridge bent under in plane, out of plane and combined loadings. Furthermore, replace the traditional flexural and shear steel reinforcement of the columns with CFRP bars. The performance of bent is assessed numerically by finite element analysis. For this purpose, six numerical bent models are developed. The first three models with traditional steel bars and the remaining models with CFRP rebars. The results demonstrated that out of plane loadings has more impact on the bent structural performance than other loading cases. Flexural and shear failures are observed in the columns for models with steel rebars. The failure started from lower side of the column for both in plane and out of plane loadings showing low resistance. The steel rebars yielded in early stage of loading indicating limited stiffness. However, the bent performance has been enhanced by replacing rebars with CFRP. The bent stiffness has slightly improved by replacing with less diameter of CFRP rods and stirrups. In addition, the CFRP bars showed considerable resistance and hardly showed plasticity during apply loading indicating that the CFRP is suitable material to replace steel reinforcement.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7867
Author(s):  
Mohammad Ali Asaad ◽  
Ghasan Fahim Huseien ◽  
Mohammad Hajmohammadian Baghban ◽  
Pandian Bothi Raja ◽  
Roman Fediuk ◽  
...  

The inhibiting effect of Gum Arabic-nanoparticles (GA-NPs) to control the corrosion of reinforced concrete that exposed to carbon dioxide environment for 180 days has been investigated. The steel reinforcement of concrete in presence and absence of GA-NPs were examined using various standard techniques. The physical/surface changes of steel reinforcement was screened using weight loss measurement, electrochemical impedance spectroscopy (EIS), atomic force microscopy and scanning electron microscopy (SEM). In addition, the carbonation resistance of concrete as well screened using visual inspection (carbonation depth), concrete alkalinity (pH), thermogravimetric analysis (TGA), SEM, energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The GA-NPs inhibitor size was also confirmed by transmission electron microscopy (TEM). The results obtained revealed that incorporation of 3% GA-NPs inhibitor into concrete inhibited the corrosion process via adsorption of inhibitor molecules over the steel reinforcement surface resulting of a protective layer formation. Thus, the inhibition efficiency was found to increase up-to 94.5% with decreasing corrosion rate up-to 0.57 × 10−3 mm/year. Besides, the results also make evident the presence of GA-NPs inhibitor, ascribed to the consumption of calcium hydroxide, and reduced the Ca/Si to 3.72% and 0.69% respectively. Hence, C-S-H gel was developed and pH was increased by 9.27% and 12.5, respectively. It can be concluded that green GA-NPs have significant corrosion inhibition potential and improve the carbonation resistance of the concrete matrix to acquire durable reinforced concrete structures.


2021 ◽  
Vol 13 (24) ◽  
pp. 14004
Author(s):  
Mateusz Frydrych ◽  
Grzegorz Kacprzak ◽  
Paweł Nowak

This article addresses hazard reduction in deep excavations. The authors present a possible combination of prestressing of concrete structures (from bridge engineering) and prestressed structures of diaphragm walls from geotechnical engineering science. This innovative concept has not yet been shown in scientific articles. The “Sofistik” software (with TENDON module–SYSP/AXES/TOPP/TGEO) and its use is shown, with graphical presentations of the suggested solution. The authors compare the provided solution through usage of Sofistik and Plaxis software. The results show possible strengthening of sustainable construction by limitation of hazards and decreasing costs (via limitation of use of expensive steel reinforcement).


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7578
Author(s):  
Alexander Sergeevich Korolev ◽  
Anastasia Kopp ◽  
Denis Odnoburcev ◽  
Vladislav Loskov ◽  
Pavel Shimanovsky ◽  
...  

Concretes with the same strength can have various deformability that influences span structures deflection. In addition, a significant factor is the non-linear deformation of concrete dependence on the load. The main deformability parameter of concrete is the instantaneous modulus of elasticity. This research aims to evaluate the relation of concrete compressive and tensile elastic properties testing. The beam samples at 80 × 140 × 1400 cm with one rod Ø8 composite or Ø10 steel reinforcement were experimentally tested. It was shown that instantaneous elastic deformations under compression are much lower than tensile. Prolonged elastic deformations under compression are close to tensile. It results in compressive elasticity modulus exceeding the tensile. The relation between these moduli is proposed. The relation provides operative elasticity modulus testing by the bending tensile method. The elasticity modulus’s evaluation for the reinforced span structures could be based only on the bending testing results. A 10% elasticity modulus increase, which seems not significant, increases at 30–40% the stress of the reinforced span structures under load and 30% increases the cracking point stress.


2021 ◽  
Vol 1209 (1) ◽  
pp. 012061
Author(s):  
Ž Šenšelová ◽  
V Borzovič

Abstract Composite materials became more popular and commercially available as reinforcement for concrete elements. Fibre Reinforced Polymer (FRP) bar is an excellent thermal and electrical insulator with high tensile strength and low weight. These assumptions make them a possible substitution for steel reinforcement. Moreover, GFRP is not responsible to corrosion for that are suitable for structures with high humidity and unfavorable environment. GFRP is easier to handle due to its low weight. Also, it has electromagnetic neutrality. But it has some disadvantages. It has a low modulus of elasticity and sensitivity to elevated temperatures. Another drawback and uncertainty with designing is the impact of an alkaline environment, which decreases the long-term strength of GFRP bars. This paper describes a pre-experiment study of concrete elements resistance. The analysis is performed for a cross-section of 200x150 mm for a short concrete column with steel and GFRP reinforcement. The study compares P-M diagrams for steel reinforcement and GFRP reinforcement with different reinforcement ratios. Other characteristics such as tensile strength and modulus of elasticity must be considered to design the GFRP reinforced concrete element. The study also considers the contribution of GFRP reinforcement in compression. The analysis has shown, the shape of interaction diagrams of steel and GFRP reinforcement are significantly different.


2021 ◽  
Vol 44 ◽  
pp. 103310
Author(s):  
Mingkai Li ◽  
Billy C.L. Wong ◽  
Yuhan Liu ◽  
Chun Man Chan ◽  
Vincent J.L. Gan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document