Demand of Wireless Network and Security in Current Research

2015 ◽  
Vol 14 (6) ◽  
pp. 5809-5813
Author(s):  
Abhishek Prabhakar ◽  
Amod Tiwari ◽  
Vinay Kumar Pathak

Wireless security is the prevention of unauthorized access to computers using wireless networks .The trends in wireless networks over the last few years is same as growth of internet. Wireless networks have reduced the human intervention for accessing data at various sites .It is achieved by replacing wired infrastructure with wireless infrastructure. Some of the key challenges in wireless networks are Signal weakening, movement, increase data rate, minimizing size and cost, security of user and QoS (Quality of service) parameters... The goal of this paper is to minimize challenges that are in way of our understanding of wireless network and wireless network performance.

The forthcoming wireless networks provide the continuous services to their users for different applications by the integration of diverse wireless access technologies known as heterogeneous wireless network. The heterogeneous wireless network improves the Quality of Service for stationary and non-stationary mobile users. Even when users are in mobility the services are provided by means of handoff or handover. In this paper, the integration of three different wireless networks such as LTE, WiMAX and Wi-Fi networks and their vertical handoff performance analysis are presented. These diverse wireless networks which are considered for integration are modeled as a heterogeneous wireless network. This network is designed using QualNet simulator. Furthermore, the designed heterogeneous network, vertical handoff performance is estimated by using factors such as throughput, jitter and End to End delay. With these performance factors, the designed network’s Quality of Service (QoS) is estimated under mobility conditions.


2019 ◽  
Vol 8 (4) ◽  
pp. 4522-4525

Wireless networks are classified into different types of networks namely infrastructure and infrastructure less networks. In infrastructure less network Vehicular adhoc network is an energy oriented multibroadcating network, nowadays due to the rapid growth and development in the automobile sector many accidents are occurring during driving a vehicle. In simulation environment various protocols are designed to monitor the network performance and to increase the network performance, in our proposed method we designed a new protocol named cluster based VANET routing protocol (CBVRP) to increase the network performance and to reduce the energy consumption. The protocol aims to minimize the energy consumption to increase the lifetime of the network and increasing the quality of service parameters like packet delivery ratio, reducing delay, reducing normalized routing overhead and increasing efficiency. The results shows that the proposed protocol improves the quality of service parameters and it consumes less energy compared with an existing protocol.


Author(s):  
Simar Preet Singh ◽  
Rajesh Kumar ◽  
Anju Sharma ◽  
S. Raji Reddy ◽  
Priyanka Vashisht

Background: Fog computing paradigm has recently emerged and gained higher attention in present era of Internet of Things. The growth of large number of devices all around, leads to the situation of flow of packets everywhere on the Internet. To overcome this situation and to provide computations at network edge, fog computing is the need of present time that enhances traffic management and avoids critical situations of jam, congestion etc. Methods: For research purposes, there are many methods to implement the scenarios of fog computing i.e. real-time implementation, implementation using emulators, implementation using simulators etc. The present study aims to describe the various simulation and emulation tools for implementing fog computing scenarios. Results: Review shows that iFogSim is the simulator that most of the researchers use in their research work. Among emulators, EmuFog is being used at higher pace than other available emulators. This might be due to ease of implementation and user-friendly nature of these tools and language these tools are based upon. The use of such tools enhance better research experience and leads to improved quality of service parameters (like bandwidth, network, security etc.). Conclusion: There are many fog computing simulators/emulators based on many different platforms that uses different programming languages. The paper concludes that the two main simulation and emulation tools in the area of fog computing are iFogSim and EmuFog. Accessibility of these simulation/emulation tools enhance better research experience and leads to improved quality of service parameters along with the ease of their usage.


Sign in / Sign up

Export Citation Format

Share Document