scholarly journals A Comprehensive review of Artificial Bee Colony Algorithm

2013 ◽  
Vol 5 (1) ◽  
pp. 15-28 ◽  
Author(s):  
Kamalam Balasubramani ◽  
Karnan Marcus

The Artificial Bee Colony (ABC) algorithm is a stochastic, population-based evolutionary method proposed by Karaboga in the year 2005. ABC algorithm is simple and very flexible when compared to other swarm based algorithms. This method has become very popular and is widely used, because of its good convergence properties. The intelligent foraging behavior of honeybee swarm has been reproduced in ABC.Numerous ABC algorithms were developed based on foraging behavior of honey bees for solving optimization, unconstrained and constrained problems. This paper attempts to provide a comprehensive survey of research on ABC. A system of comparisons and descriptions is used to designate the importance of ABC algorithm, its enhancement, hybrid approaches and applications.

2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Quande Qin ◽  
Shi Cheng ◽  
Qingyu Zhang ◽  
Li Li ◽  
Yuhui Shi

Artificial bee colony (ABC) is one of the newest additions to the class of swarm intelligence. ABC algorithm has been shown to be competitive with some other population-based algorithms. However, there is still an insufficiency that ABC is good at exploration but poor at exploitation. To make a proper balance between these two conflictive factors, this paper proposed a novel ABC variant with a time-varying strategy where the ratio between the number of employed bees and the number of onlooker bees varies with time. The linear and nonlinear time-varying strategies can be incorporated into the basic ABC algorithm, yielding ABC-LTVS and ABC-NTVS algorithms, respectively. The effects of the added parameters in the two new ABC algorithms are also studied through solving some representative benchmark functions. The proposed ABC algorithm is a simple and easy modification to the structure of the basic ABC algorithm. Moreover, the proposed approach is general and can be incorporated in other ABC variants. A set of 21 benchmark functions in 30 and 50 dimensions are utilized in the experimental studies. The experimental results show the effectiveness of the proposed time-varying strategy.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Mingzhu Tang ◽  
Wen Long ◽  
Huawei Wu ◽  
Kang Zhang ◽  
Yuri A. W. Shardt

Artificial bee colony (ABC) is a novel population-based optimization method, having the advantage of less control parameters, being easy to implement, and having strong global optimization ability. However, ABC algorithm has some shortcomings concerning its position-updated equation, which is skilled in global search and bad at local search. In order to coordinate the ability of global and local search, we first propose a self-adaptive ABC algorithm (denoted as SABC) in which an improved position-updated equation is used to guide the search of new candidate individuals. In addition, good-point-set approach is introduced to produce the initial population and scout bees. The proposed SABC is tested on 12 well-known problems. The simulation results demonstrate that the proposed SABC algorithm has better search ability with other several ABC variants.


Author(s):  
Bahriye Basturk Akay ◽  
Dervis Karaboga

Optimization problems are generally classified into two main groups:unconstrained and constrained. In the case of constrainedoptimization, special techniques are required to handle withconstraints and produce solutions in the feasible space. Intelligentoptimization techniques that do not make assumptions on the problemcharacteristics are preferred to produce acceptable solutions to theconstrained optimization problems. In this study, the performance ofartificial bee colony algorithm (ABC), one of the intelligentoptimization techniques, is investigated on constrained problems andthe effect of some modifications on the performance of the algorithmis examined. Different variants of the algorithm have been proposedand compared in terms of efficiency and stability. Depending on theresults, when DE operators were integrated into ABC algorithm'sonlooker phase while the employed bee phase is retained as in ABCalgorithm, an improvement in the performance was gained in terms ofthe best solution in addition to preserving the stability of thebasic ABC. The ABC algorithm is a simple optimization algorithm thatcan be used for constrained optimization without requiring a prioriknowledge.


2012 ◽  
Vol 42 (1) ◽  
pp. 21-57 ◽  
Author(s):  
Dervis Karaboga ◽  
Beyza Gorkemli ◽  
Celal Ozturk ◽  
Nurhan Karaboga

2021 ◽  
pp. 1-18
Author(s):  
Baohua Zhao ◽  
Tien-Wen Sung ◽  
Xin Zhang

The artificial bee colony (ABC) algorithm is one of the classical bioinspired swarm-based intelligence algorithms that has strong search ability, because of its special search mechanism, but its development ability is slightly insufficient and its convergence speed is slow. In view of its weak development ability and slow convergence speed, this paper proposes the QABC algorithm in which a new search equation is based on the idea of quasi-affine transformation, which greatly improves the cooperative ability between particles and enhances its exploitability. During the process of location updating, the convergence speed is accelerated by updating multiple dimensions instead of one dimension. Finally, in the overall search framework, a collaborative search matrix is introduced to update the position of particles. The collaborative search matrix is transformed from the lower triangular matrix, which not only ensures the randomness of the search, but also ensures its balance and integrity. To evaluate the performance of the QABC algorithm, CEC2013 test set and CEC2014 test set are used in the experiment. After comparing with the conventional ABC algorithm and some famous ABC variants, QABC algorithm is proved to be superior in efficiency, development ability, and robustness.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1211
Author(s):  
Ivona Brajević

The artificial bee colony (ABC) algorithm is a prominent swarm intelligence technique due to its simple structure and effective performance. However, the ABC algorithm has a slow convergence rate when it is used to solve complex optimization problems since its solution search equation is more of an exploration than exploitation operator. This paper presents an improved ABC algorithm for solving integer programming and minimax problems. The proposed approach employs a modified ABC search operator, which exploits the useful information of the current best solution in the onlooker phase with the intention of improving its exploitation tendency. Furthermore, the shuffle mutation operator is applied to the created solutions in both bee phases to help the search achieve a better balance between the global exploration and local exploitation abilities and to provide a valuable convergence speed. The experimental results, obtained by testing on seven integer programming problems and ten minimax problems, show that the overall performance of the proposed approach is superior to the ABC. Additionally, it obtains competitive results compared with other state-of-the-art algorithms.


2018 ◽  
Vol 10 (1) ◽  
pp. 17
Author(s):  
Nursyiva Irsalinda ◽  
Sugiyarto Surono

Artificial Bee Colony (ABC) algorithm is one of metaheuristic optimization technique based on population. This algorithm mimicking honey bee swarm to find the best food source. ABC algorithm consist of four phases: initialization phase, employed bee phase, onlooker bee phase and scout bee phase. This study modify the onlooker bee phase in selection process to find the neighborhood food source. Not all food sources obtained are randomly sought the neighborhood as in ABC algorithm. Food sources are selected by comparing their objective function values. The food sources that have value lower than average value in that iteration will be chosen by onlooker bee to get the better food source. In this study the modification of this algorithm is called New Modification of Artificial Bee Colony Algorithm (MB-ABC). MB-ABC was applied to 4 Benchmark functions. The results show that MB-ABC algorithm better than ABC algorithm


Sign in / Sign up

Export Citation Format

Share Document