scholarly journals Decrypting the Central Mystery of Quantum Mathematics:

2019 ◽  
Vol 17 ◽  
pp. 255-282
Author(s):  
Jeffrey Boyd

This article proposes a solution to the double slit experiment of Quantum Mechanics. We attack the problem from a previously untried angle. Unsolved math problems must be attacked from unexpected angles because every conventional approach has already been tried and failed. Richard Feynman warned that the quantum world is such a strange place that humans can’t understand it. There is empirical evidence of particles following zero energy waves backwards, although that is counterintuitive. Schr˝odinger waves carry zero energy: they carry probability amplitudes instead. In our proposed model zero energy Schr˝odinger waves emanating from every point on the target screen pass backwards through the two slits, interfere at the particle gun, and a particle randomly chooses which wave to follow backwards. Once that decision is made the particle follows its wave with a probability of one, through only one slit (it doesn’t matter which slit) and inevitably strikes that point from which its wave emanates. This produces the same math and same pattern on the target screen. We propose three Axioms of the Theory of Elementary Waves (TEW) as a better platform for mathematics in this experiment than the Axioms of QM. This constitutes a paradigm shift.

2015 ◽  
Vol 7 (3) ◽  
pp. 1916-1922
Author(s):  
Jeffrey H Boyd

Wave particle duality is a mistake. Another option was neither conceived nor debated, which is a better foundation for quantum mechanics. The Theory of Elementary Waves (TEW) is based on the idea that particles follow zero energy waves backwards. A particle cannot be identical with its wave if they travel in opposite directions. TEW is the only form of local realism that is consistent with the results of the experiment by Aspect, Dalibard and Roger (1982). Here we show that 1. although QM teaches that complementarity in a double slit experiment cannot be logically explained, TEW explains it logically, without wave function collapse, and 2. gives an unconventional explanation of the Davisson Germer experiment. 3. There is empirical evidence for countervailing waves and particles and 4. zero energy waves. 5. TEW clarifies our understanding of probability amplitudes and supports quantum math. 6. There is an untested experiment for which TEW and wave particle duality predict different outcomes. If TEW is valid, then wave particle duality is not necessary for quantum math, which is the most accurate and productive science ever. With a more solid foundation, new vistas of science open, such as the study of elementary waves.


2015 ◽  
Vol 10 (3) ◽  
pp. 2774-2783
Author(s):  
Jeffrey H. Boyd

This article proposes solutions to two riddles of quantum mechanics (QM): (1) What is the physical analog of a quantum amplitude?, (2) Why do electrons in a double slit experiment act differently if we look at them? The Theory of Elementary Waves (TEW) is an unconventional view of how nature is organized. Elementary ray amplitudes precede and travel in the opposite direction as particles, which then follow these amplitudes backwards. The amplitude A = |A| eiθ is a vector in Hilbert space, but it moves through Euclidean space. This makes explicit something implicit in Feynman’s thinking, although Feynman had the amplitudes traveling in the wrong direction. In double slit experiments, the amplitude of elementary rays going though the two slits interfere before they reach the electron gun. Any experiment that detects which slit the electron uses, destroys the coherence of those two rays, destroying the interference. Because there is no interference, the target screen displays no interference fringe pattern. TEW represents a paradigm shift of seismic proportions, in both classical and quantum physics. Thomas Kuhn warns that paradigm shifts of this magnitude are usually rejected as preposterous. That is exactly what happened to Alfred Wegener’s idea of “continental drift.”


2020 ◽  
Vol 17 ◽  
pp. 169-203
Author(s):  
Jeffrey Boyd

This article proposes that an unexpected approach to the mathematics of a Schro ̋dinger wave packet and Quantum Electro-Dynamics (QED), could vastly simplify how we perceive the world around us. It could get rid of most if not all quantum weirdness. Schro ̋dinger’s cat would be gone. Even things that we thought were unquestionably true about the quantum world would change. For example, the double slit experiment would no longer support wave particle duality. Experiments that appeared to say that entangled particles can communicate instantaneously over great distances, would no longer say that. Although the tiny mathematical change is counterintuitive, Occam’s razor dictates that we consider it because it simplifies how we view Nature in such a pervasive way. The change in question is to view a Schro ̋dinger wave packet as part of a larger Elementary Wave traveling in the opposite direction. It is known in quantum mechanics that the same wave can travel in two countervailing directions simultaneously. Equivalent changes would be made to QED and Quantum Field Theory. It is known in QM that there are zero energy waves: for example, the Schro ̋dinger wave carries amplitudes but not energy.


2018 ◽  
Vol 14 (3) ◽  
pp. 5812-5834
Author(s):  
Jeffrey Boyd

John von Neumann states a paradox. Why does measuring something disrupt the smooth Schrödinger wave, causing it to collapse for no mathematical reason? This paradox is embedded in the double slit experiment. When a dot appears on the target screen, how does that cause the Schrödinger wave to collapse everywhere else, faster than the speed of light? Von Neumann didn’t follow his mathematics to its logical conclusion. If wave function collapse irreversably changes reality, then the math is telling us that the timing and location of that event cannot be at the target screen. An event fitting that description happens only once: at the gun. A gunshot CAN change history. We propose a new mathematics of Schrödinger waves. Zero energy waves from the target screen pass backwards through the double slits and impinge on the gun prior to the gun firing. A particle randomly chooses one to follow backwards. The particle’s choice of wave is proportional to the amplitude squared of that wave at the gun, determined by the superposition of the two waves moving backwards through the two slits. Why follow a wave of zero energy? Because Schrödinger waves convey amplitudes determining the probability density of that path.


2015 ◽  
Vol 9 (3) ◽  
pp. 2470-2475
Author(s):  
Bheku Khumalo

This paper seeks to discuss why information theory is so important. What is information, knowledge is interaction of human mind and information, but there is a difference between information theory and knowledge theory. Look into information and particle theory and see how information must have its roots in particle theory. This leads to the concept of spatial dimensions, information density, complexity, particle density, can there be particle complexity, and re-looking at the double slit experiment and quantum tunneling. Information functions/ relations are discussed.


2015 ◽  
Vol 10 (2) ◽  
pp. 2692-2695
Author(s):  
Bhekuzulu Khumalo

Heat has often been described as part of the energy transfer process. Information theory says everything is information. If everything is information then what type of information is heat, this question can be settled by the double slit experiment, but we must know what we are looking for. 


2021 ◽  
Author(s):  
Saba Khan ◽  
Stuti Joshi ◽  
Paramasivam Senthilkumaran

Author(s):  
S. Jeffers ◽  
R. D. Prosser ◽  
W. C. Berseth ◽  
G. Hunter ◽  
J. Sloan

Sign in / Sign up

Export Citation Format

Share Document