scholarly journals ON THE EXTREMAL BETTI NUMBERS OF SQUAREFREE MONOMIAL IDEALS

Author(s):  
Luca AMATA ◽  
Marilena CRUPİ
2016 ◽  
Vol 45 (4) ◽  
pp. 1483-1492 ◽  
Author(s):  
Ali Akbar Yazdan Pour

1999 ◽  
Vol 153 ◽  
pp. 141-153 ◽  
Author(s):  
Jürgen Herzog ◽  
Takayuki Hibi

AbstractA componentwise linear ideal is a graded ideal I of a polynomial ring such that, for each degree q, the ideal generated by all homogeneous polynomials of degree q belonging to I has a linear resolution. Examples of componentwise linear ideals include stable monomial ideals and Gotzmann ideals. The graded Betti numbers of a componentwise linear ideal can be determined by the graded Betti numbers of its components. Combinatorics on squarefree componentwise linear ideals will be especially studied. It turns out that the Stanley-Reisner ideal IΔ arising from a simplicial complex Δ is componentwise linear if and only if the Alexander dual of Δ is sequentially Cohen-Macaulay. This result generalizes the theorem by Eagon and Reiner which says that the Stanley-Reisner ideal of a simplicial complex has a linear resolution if and only if its Alexander dual is Cohen-Macaulay.


2007 ◽  
Vol 187 ◽  
pp. 115-156 ◽  
Author(s):  
Christopher A. Francisco ◽  
Adam Van Tuyl

AbstractLet R = k[x1,…,xn] be a polynomial ring over a field k. Let J = {j1,…,jt} be a subset of {1,…, n}, and let mJ ⊂ R denote the ideal (xj1,…,xjt). Given subsets J1,…,Js of {1,…, n} and positive integers a1,…,as, we study ideals of the form These ideals arise naturally, for example, in the study of fat points, tetrahedral curves, and Alexander duality of squarefree monomial ideals. Our main focus is determining when ideals of this form are componentwise linear. Using polymatroidality, we prove that I is always componentwise linear when s ≤ 3 or when Ji ∪ Jj = [n] for all i ≠ j. When s ≥ 4, we give examples to show that I may or may not be componentwise linear. We apply these results to ideals of small sets of general fat points in multiprojective space, and we extend work of Fatabbi, Lorenzini, Valla, and the first author by computing the graded Betti numbers in the s = 2 case. Since componentwise linear ideals satisfy the Multiplicity Conjecture of Herzog, Huneke, and Srinivasan when char(k) = 0, our work also yields new cases in which this conjecture holds.


10.37236/125 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Michael Goff

We prove a tight lower bound on the algebraic Betti numbers of tree and forest ideals and an upper bound on certain graded Betti numbers of squarefree monomial ideals.


1997 ◽  
Vol 92 (1) ◽  
pp. 447-453 ◽  
Author(s):  
Naoki Terai ◽  
Takayuki Hibi

Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 695
Author(s):  
Amata ◽  
Crupi

Let K be a field and let S = K[x1, . . . , xn] be a polynomial ring over K. We analyze the extremal Betti numbers of special squarefree monomial ideals of S known as the t-spread stronglystable ideals, where t is an integer ≥ 1. A characterization of the extremal Betti numbers of such a class of ideals is given. Moreover, we determine the structure of the t-spread strongly stable idealswith the maximal number of extremal Betti numbers when t = 2.


2017 ◽  
Vol 10 (03) ◽  
pp. 1750061
Author(s):  
Somayeh Moradi

In this paper, we study the regularity and the projective dimension of the Stanley–Reisner ring of a [Formula: see text]-decomposable simplicial complex and explain these invariants with a recursive formula. To this aim, the graded Betti numbers of decomposable monomial ideals which is the dual concept for [Formula: see text]-decomposable simplicial complexes are studied and an inductive formula for the Betti numbers is given. As a corollary, for a shellable simplicial complex [Formula: see text], a formula for the regularity of the Stanley–Reisner ring of [Formula: see text] is presented. Finally, for a chordal clutter [Formula: see text], an upper bound for [Formula: see text] is given in terms of the regularities of edge ideals of some chordal clutters which are minors of [Formula: see text].


2018 ◽  
Vol 508 ◽  
pp. 445-460 ◽  
Author(s):  
Adam Boocher ◽  
James Seiner

Sign in / Sign up

Export Citation Format

Share Document