scholarly journals Temperature analysis in friction stir welding of ADC12/5052 dissimilar aluminum alloys

2007 ◽  
Vol 57 (11) ◽  
pp. 511-517 ◽  
Author(s):  
Masafumi KOKUBO ◽  
Yoshimasa TAKAYAMA ◽  
Shinichi KAZUI ◽  
Takao KANEUCHI ◽  
Hajime KATO ◽  
...  
2007 ◽  
Vol 561-565 ◽  
pp. 279-282 ◽  
Author(s):  
Masafumi Kokubo ◽  
Shinichi Kazui ◽  
Takao Kaneuchi ◽  
Yoshimasa Takayama ◽  
Hajime Kato ◽  
...  

Microstructural characterization and temperature analysis have been performed in friction stir welding (FSW) of A383 and 5052 dissimilar aluminum alloys. Marked difference in microstructure was observed between joints with different arrangements of materials. The temperature at four points on each side of the joint line was measured during FSW in various conditions. In addition, an analytical model assumed that the work generated by the rotation of the tool led to the work for stirring materials and heat generation of the material and the tool. The temperature of the retreating side (RS) for the joint of the advancing side (AS):A383/RS:5052 was about 50K higher than that of AS, while the temperatures of AS and RS for the joint of AS:5052/RS:A383 were almost the same. The experimental temperature could be calculated reasonably by using the model with assumption of the work for stirring the material.


Author(s):  
Morteza Ghaffarpour ◽  
Mohammad Kazemi ◽  
Mohammad Javad Mohammadi Sefat ◽  
Ahmad Aziz ◽  
Kamran Dehghani

In the present study, friction stir welding (FSW) and tungsten inert gas (TIG) techniques were used to join the dissimilar aluminum alloys of 5083-H12 and 6061-T6. The laboratory tests were designed using design of experiment (DOE) method. Variables for the FSW process were the rotational speed, traverse speed, shoulder diameter, and pin diameter. They changed in ranges of 700–2500 r/min, 25–400 mm/min, 10–14 mm, and 2–4 mm, respectively. In the case of TIG process, the variables were current intensity, traverse speed, and tilt angle. These parameters varied from 80 to 90 A, 200 to 400 mm/min, and 3° to 12°, respectively. The optimum amounts of parameters were obtained using response surface methodology (RSM). The RSM-based model was developed to predict ultimate tensile strength (UTS) of the welds produced. In FSW, the difference between predicted and measured UTS was about 1.28% and in TIG it was 1.78%. The good agreement between experimental and predicted results indicates the high accuracy of the developed model. Mechanical properties and also the microstructure of the welds were compared after optimizing both welding processes using RSM. The results showed that the welds produced by FSW indicated a considerably higher quality and also improved mechanical properties compared to TIG. Properties of the joints obtained by FSW in single-sided joints were more desirable. In the double-sided welds obtained by FSW these differences were of an even higher significance.


Sign in / Sign up

Export Citation Format

Share Document