temperature analysis
Recently Published Documents


TOTAL DOCUMENTS

684
(FIVE YEARS 138)

H-INDEX

40
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Md. Zilan Uddin Sail ◽  
Dewan Mahnaaz Mahmud ◽  
Farhan Tasnim ◽  
Md. Abu Hanif ◽  
Md. Rasel Ahmed ◽  
...  

2021 ◽  
Vol 35 (6) ◽  
pp. 911-925
Author(s):  
Lifan Chen ◽  
Lijuan Cao ◽  
Zijiang Zhou ◽  
Dongbin Zhang ◽  
Jie Liao

2021 ◽  
Vol 127 (12) ◽  
Author(s):  
Chetlal Mahto ◽  
Prithvi Raj Sharma ◽  
Siddharth Kumar Nishad ◽  
Shubham Kumar ◽  
Navaneet Kumar Singh ◽  
...  

2021 ◽  
Vol 13 (22) ◽  
pp. 4535
Author(s):  
Arnaldo Collazo Aranda ◽  
Daniela Rivera-Ruiz ◽  
Lien Rodríguez-López ◽  
Pablo Pedreros ◽  
José Luis Arumí-Ribera ◽  
...  

Lake temperature has proven to act as a good indicator of climate variability and change. Thus, a surface temperature analysis at different temporal scales is important, as this parameter influences the physical, chemical, and biological cycles of lakes. Here, we analyze monthly, seasonal, and annual surface temperature trends in south central Chilean lakes during the 2000–2016 period, using MODIS satellite imagery. To this end, 14 lakes with a surface area greater than 10 km2 were examined. Results show that 12 of the 14 lakes presented a statistically significant increase in surface temperature, with a rate of 0.10 °C/decade (0.01 °C/year) over the period. Furthermore, some of the lakes in the study present a significant upward trend in surface temperature, especially in spring, summer, and winter. In general, a significant increase in surface water temperature was found in lakes located at higher altitudes, such as Maule, Laja and Galletué lakes. These results contribute to the provision of useful data on Chilean lakes for managers and policymakers.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
A. R. Kalaiarasi ◽  
T. Deepa ◽  
S. Angalaeswari ◽  
D. Subbulekshmi ◽  
Raja Kathiravan

This work is focused on design and simulation of microelectromechanical system (MEMS)/nanoelectromechanical system (NEMS) rotational devices such as micro/nanothermal rotary actuator and micro/nanogear. MEMS/NEMS technologies have allowed the development of advanced miniaturized rotational devices. MEMS/NEMS-based thermal actuator is a scaled version of movable device which will produce amplified motion when it is subjected to thermal forces. One of the applications of such thermal micro/nanoactuator is integrating it into micro/nanomotor that makes a thermal actuated micro/nanomotor. In this work, design and simulation of micro/nanothermal rotary actuator are done using MEMS/NEMS technology. Stress, current density, and temperature analysis are done for microthermal rotary actuator. The performance of the device is observed by varying the dimensions and materials such as silicon and polysilicon. Stress analysis is used to calculate the yield strength of the material. Current density is used to calculate the safer limit of the material. Temperature analysis is used to calculate the melting point of the material. Also, in this work, design and simulation of microgear have been done. Micro/nanogears are devices that can be used to improve motion performance. The essential is that it transmits rotational motion to a different axis.


Sign in / Sign up

Export Citation Format

Share Document