dissimilar aluminum alloys
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 52)

H-INDEX

18
(FIVE YEARS 4)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 260
Author(s):  
Rami Alfattani ◽  
Mohammed Yunus ◽  
Ahmed F. Mohamed ◽  
Turki Alamro ◽  
Mohamed K. Hassan

The fuel consumption of high-density automobiles has increased in recent years. Aluminum (Al) alloy is a suitable material for weight reduction in vehicles with high ductility and low weight. To address environmental problems in aircraft and maritime applications, in particular rust development and corrosion, the current study assesses the corrosion behavior during friction stir welding (FSW) of two dissimilar Al alloys (AA6061 and AA8011) in various corrosive conditions using salt spraying and submersion tests. Two acidic solutions and one alkaline solution are used in these tests, which are performed at room temperature. The two specimens (AA6061 and AA8011) and the weld region are suspended in a salt spraying chamber and a 5 wt.% NaCl solution is continually sprayed using the circulation pump for 60 h, with the specimens being weighed every 15 h to determine the corrosion rates. According to the salt spraying data, the weld zone has a higher corrosion resistance than the core components. For twenty-eight days, individual specimens are submerged in 3.5 wt.% HCl + H2O and H2SO4 + H2O solutions and seawater. The weld area specimens exhibit stronger corrosion resistance than the base material specimens, and weight loss in the saltwater medium is lower when compared to the other test solutions, according to the corrosion analysis. The scanning electron microscope (SEM) analysis demonstrates that the base metal AA8011 is considerably corroded on its surface.


Author(s):  
Sumit Jain ◽  
R.S. Mishra

In this research, a defect-free dissimilar weld joint of AA7075-T6 and AA6061-T6 reinforced with Al2O3 nanoparticles was fabricated via friction stir welding (FSW). The influence of tool rotational speed (700, 900 and 1100 rpm), traverse speed (40, 50 and 60 mm/min) with varying volume fractions of Al2O3 nanoparticles (4%, 7% and 10%) on microstructural evolution and mechanical properties were investigated. The augmentation of various mechanical properties is based on the homogeneity of particle dispersion and grains refinement in the SZ of the FSWed joint. The findings revealed that the remarkable reduction in grain size in the SZ was observed owing to the incorporation of Al2O3 nanoparticles produces the pinning effect, which prevents the growth of grain boundaries by dynamic recrystallization (DRX). The increasing volume fraction of Al2O3 nanoparticles enhanced the mechanical properties such as tensile strength, % elongation and micro-hardness. Agglomeration of particles was observed in the SZ of the FSWed joints produced at lower tool rotational speed of 700 rpm and higher traverse speed of 60 mm/min due to unusual material flow. Homogenous particle dispersion and enhanced material mixing ensue at higher rotational speed of 1100 rpm and lower traverse speed of 40 mm/min exhibit higher tensile strength and micro-hardness.


Author(s):  
Noor Zaman Khan ◽  
Arshad Noor Siddiquee ◽  
Zahid A Khan ◽  
Irfan Anjum Badruddin ◽  
Sarfaraz Kamangar ◽  
...  

High productivity, excellent joint strength and small weld bead make friction stir welding an emerging joining technique to join difficult to weld dissimilar aluminum alloys. Effect of rotational speed, traverse speed and shoulder diameter on the joint strength and elongation of the friction stir welded dissimilar aluminum alloys (AA7475-AA2219) is investigated. In addition, parameters are optimized to obtain joint with narrow weld bead and high joint efficiency using the entropy-weighted technique for order of preference by similarity to ideal solution method. Nine experiments are performed as per the L9 orthogonal array and mechanical properties of the welded joints are measured. Results of the study reveal that optimum values of ultimate tensile strength and percentage elongation are obtained at a rotational speed of 710 rev/min, welding speed of 250 mm/min and shoulder diameter of 10 mm resulting in good joint strength, high productivity and narrow weld bead. From the selected process parameter range, tool shoulder diameter is found to be the most significant parameter. The findings of the present study are discussed in light of the friction stir welding process mechanism, available literature, mechanical testing, microstructure and fractography.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Arun M. ◽  
Muthukumaran M. ◽  
Balasubramanian S.

Purpose Dissimilar materials found applications in the structural fields to withstand the different types of loads and provide multi-facet properties to the final structure. Aluminum alloy materials are mostly used in aerospace and marine industries to provide better strength and safeguard the material from severe environmental conditions. The purpose of this study is to develop new material with superior strength to challenge the severe environmental conditions. Design/methodology/approach In the present investigation, friction stir welding (FSW) dissimilar joints were prepared from AA6061 and AA5083 aluminum alloys, and the weld nugget (WN) was reinforced with hard reinforcement particles such as La2O3 and CeO2. The tribological and mechanical properties of the prepared materials were tested to analyze the suitability of material in the aerospace and marine environmental conditions. Findings The results showed that the AA6061–AA5083/La2O3 material exhibited better mechanical and tribological characteristics. The FSW dissimilar AA6061–AA5083/La2O3 material exhibited lower wear rate of 7.37 × 10−3 mm3/m and minimum friction coefficient of 0.31 compared to all other materials owing to the reinforcing effect of La2O3 particles and the fine grains formed by FSW process at WN region. Further, FSW dissimilar AA6061–AA5083/La2O3 material displayed a maximum tensile strength and hardness of 378 MPa and 118 HV, respectively, among all the other materials tested. Originality/value This work is original and novel in the field of materials science engineering focusing on tribological characteristics of friction stir welded dissimilar aluminum alloys by the reinforcing effect of hard particles such as La2O3 and CeO2.


Sign in / Sign up

Export Citation Format

Share Document