Modification in Movement Accuracy in the Triphasic Pattern during a Rapid Forearm-Flexion Task

1988 ◽  
Vol 67 (2) ◽  
pp. 455-460 ◽  
Author(s):  
Michel André Roy ◽  
Betsy A. Keller ◽  
Pierre P. Lagassé

The present study was designed to investigate modifications in the triphasic EMG pattern during a forearm-flexion task at maximum speed which required three levels of movement accuracy. 36 subjects participated in 4 training sessions, performing a total of 200 repetitions of each movement. The fastest movement time was associated with the least accurate movement task. Likewise, the slowest movement time was found for the movement requiring the greatest accuracy. Differences in the duration and amplitude of agonist 1 activity, the start of agonist 2 activity, and the start and amplitude of antagonist activity were observed for the three movements. The results indicate that agonist 1 provides a propulsive force to initiate limb movement. The antagonist EMG activity was thought responsible for braking and correcting limb movement. Modifications in agonist 2 activity suggest this burst is related to movement velocity.

2003 ◽  
Vol 95 (1) ◽  
pp. 373-384 ◽  
Author(s):  
Evangelos A. Christou ◽  
Minoru Shinohara ◽  
Roger M. Enoka

The purpose of the study was to assess the effect of movement velocity on the relation between fluctuations in acceleration and the ability to achieve a target velocity during voluntary contractions performed by young (29.5 ± 4.3 yr) and old (74.9 ± 6.2 yr) adults. Subjects performed concentric and eccentric contractions with the first dorsal interosseus muscle while lifting a submaximal load (15% of maximum) at six movement velocities (0.03–1.16 rad/s). Fluctuations in acceleration, the accuracy of matching the target velocity, and electromyographic (EMG) activity were determined from three trials for each contraction type and movement velocity. The fluctuations in acceleration increased with movement velocity for both concentric and eccentric contractions, but they were greatest during fast eccentric contractions (∼135%) when there was stronger modulation of acceleration in the 5- to 10-Hz bandwidth. Nonetheless, EMG amplitude for first dorsal interosseus increased with movement velocity only for concentric and not eccentric contractions. Consistent with the minimum variance theory, movement accuracy was related to the fluctuations in acceleration for both types of contractions in all subjects. For a given level of fluctuations in acceleration, however, old subjects were three times less accurate than young subjects. Although the EMG amplitude at each speed was similar for young and old adults, only the young adults modulated the power in the EMG spectrum with speed. Thus the fluctuations in acceleration during voluntary contractions had a more pronounced effect on movement accuracy for old adults compared with young adults, probably due to factors that influenced the frequency-domain characteristics of the EMG.


1988 ◽  
Vol 67 (2) ◽  
pp. 523-529 ◽  
Author(s):  
Richard Engelhorn

The purpose of this research was to investigate changes in the control of movement, using EMG and kinematic variables, over practice by children. Children in three age groups, 7, 9, and 11 yr., performed 60 trials of an elbow-flexion movement. Correct movements consisted of a 60° angular movement of the forearm in 800 msec. The analysis of biceps brachii and triceps brachii muscle EMG activity, movement displacement and timing error, and movement velocity patterns indicated changes in motor performance with practice. All age groups improved performance with practice and also exhibited a decrease in biceps EMG activity with practice. Only movement-time error and time to peak triceps muscle activity differed between the age groups. The 11-yr.-old group significantly altered the timing of the antagonistic response to stop the movement over the practice session. This change is suggested to be related to the greater information-processing ability of these children and the development of appropriate movement strategies to perform the movement task successfully. Other changes observed in the EMG data appear similar to changes observed in studies of adults.


1985 ◽  
Vol 54 (2) ◽  
pp. 433-448 ◽  
Author(s):  
M. E. Anderson ◽  
F. B. Horak

Monkeys were trained to make a visually triggered arm-reaching movement to a lighted button in a simple reaction-time paradigm, during which the reaction time (RT) and movement time (MT) were measured. Stimulus trains of varying duration were applied at various times before and during the movement at locations in the globus pallidus where application of long stimulus trains caused increased MTs. A critical stimulus period was identified during which stimulus application effectively prolonged MTs. The activity of pallidal neurons was examined during performance of the same behavioral task. More than 60% of the neurons examined showed task-related changes in activity that began before or during the reaching movement. For 45% of these cells, the initial change in firing occurred during the critical stimulus period, 50-150 ms before mechanically detected movement. Comparison of the critical stimulus period, the time of task-related changes in the discharge of pallidal neurons, and the time of EMG activity in muscles acting at the back, shoulder, elbow, and wrist revealed that both the critical stimulus period and changes in neuronal discharge occurred at or after initial muscle activation and during the buildup of EMG activity. These data are consistent with a model in which the globus pallidus plays a role in scaling the magnitude of muscle activity that determines movement velocity without affecting the initiation or sequential organization of the programmed motor output.


Author(s):  
Enrique Hortal ◽  
Eduardo Iáñez ◽  
Andrés Úbeda ◽  
Daniel Tornero ◽  
José M. Azorín

2001 ◽  
Vol 18 (1) ◽  
pp. 76-82 ◽  
Author(s):  
Johan Lönn, Mats Djupsjöbacka, Hakan Joha

1996 ◽  
Vol 75 (3) ◽  
pp. 1087-1104 ◽  
Author(s):  
M. Inase ◽  
J. A. Buford ◽  
M. E. Anderson

1. To examine the effect of disruption of basal ganglia output on limb stability and movement, muscimol was injected into the internal globus pallidus (GPi) of monkeys trained to make arm movements to visible or remembered targets in a two-dimensional workspace. 2. Injections of as little as 0.25 micrograms muscimol at GPi sites at which pallidal neurons with arm movement activity had been recorded were followed by drift of the contralateral arm within < 10 min. Drift was usually in the flexor direction. Injections at a few sites in or near the external pallidal segment sometimes were followed by extensor drift. 3. Drift was active (accompanied by activation of agonist muscles), but could be overcome by the animal, resulting in an oscillating movement off and on the required position. 4. The pallidal-receiving (PR) area of the thalamus was identified by recording the response of thalamic neurons to stimulation in the globus pallidus. The activity of 15 neurons identified as PR cells (n = 6) or within the PR region was recorded both before and after injection of muscimol into GPi. After the injection, the tonic discharge increased during the hold period in 47% of the cells studied. When postural drift also occurred, there was a close temporal correlation between the postinjection time at which drift occurred and the time at which the tonic discharge rate increased in thalamic neurons that were clearly related to arm movement. 5. The peak velocity of arm movements to visible or remembered visual target locations was decreased after injection of muscimol into GPi, sometimes with an increase in movement time. 6. The firing rate of PR thalamic neurons after injection of muscimol was also increased during the perimovement period. Because of the increase in the tonic discharge rate, however, the phasic movement-related change in activity could stay the same or even decrease. Postinjection changes in this movement-related phasic activity, however, were not necessarily coincident with changes in peak movement velocity. 7. Changes in reaction time were variable after injection of muscimol. In some cases it was increased, and in others decreased. The time of onset of phasic movement-related changes in the activity of PR neurons studied was not altered by the injection. 8. Our data indicate that the tonic inhibitory output of GPi, in particular to the cortical motor areas, is especially important in the maintenance of postural stability. In the absence of normal pallidal output, desired limb position can be achieved on the basis of either current or prior visual cues, but targeted movements are slowed.


1990 ◽  
Vol 63 (3) ◽  
pp. 465-472 ◽  
Author(s):  
J. D. Cooke ◽  
S. H. Brown

1. Electromyographic (EMG) activity of arm movements made at constant velocity was studied in humans. In these movements, acceleration was temporally separated from deceleration by a period of constant velocity (zero acceleration) lasting up to 600 ms. 2. Agonist (AG1) and antagonist (ANT1) bursts were associated with acceleration. AG1 began before acceleration onset. ANT1 started after the onset of AG1 and was often partially coextensive with AG1. The initial phasic activity was followed by tonic EMG activity during the constant-velocity phase of the movements. Movement deceleration was associated with an antagonist burst (ANT2) and an agonist (AG2) burst. 3. Subjects could alter the magnitudes of the acceleration- and deceleration-related activities independently, with resulting independent changes in the movement acceleration and deceleration. 4. When the duration of the constant-velocity phase was decreased, the agonist/antagonist burst pairs occurred progressively closer in time. When movement duration was decreased to the point at which the velocity profile resembled that of step-tracking movements, the four periods of phasic EMG activity formed the classic triphasic pattern. 5. Triphasic EMG patterns were occasionally seen at the beginning or end of long-duration, constant-velocity movements. When they occurred, these triphasic patterns were associated with an acceleration/deceleration pattern similar to that seen in step-tracking movements. 6. The data indicate that paired agonist/antagonist activation is the basic unit of movement control. The AG1/ANT1 burst pair determines the increase and decrease of acceleration, respectively, and the ANT2/AG2 burst pair the increase and decrease of deceleration. These muscle activation pairs can be combined as needed to produce movements having different temporal characteristics.(ABSTRACT TRUNCATED AT 250 WORDS)


1992 ◽  
Vol 72 (9) ◽  
pp. 624-633 ◽  
Author(s):  
Carolyn Gowland ◽  
Hubert deBruin ◽  
John V Basmajian ◽  
Nancy Plews ◽  
Ion Burcea

Sign in / Sign up

Export Citation Format

Share Document