scholarly journals AE Monitoring and X-ray CT Observation for Failure of Berea Sandstone with Pore Pressure Increase

2010 ◽  
Vol 126 (3) ◽  
pp. 58-63
Author(s):  
Tsuyoshi ISHIDA ◽  
Daisuke FUKAHORI ◽  
Motoi ISHIDA ◽  
Ryosuke SATO ◽  
Sumihiko MURATA ◽  
...  
Geophysics ◽  
1986 ◽  
Vol 51 (4) ◽  
pp. 1016-1016
Author(s):  
G. H. F. Gardner

The authors present their results as if Berea sandstone were an elastic material; that is, velocities are given as functions of confining and pore pressure. In fact, most rocks are inelastic and velocities depend on the history of the confining and pore pressure, and not just on the present values. Some measurements of hysteresis were reported by Gardner et al. (1965). The confining pressure was cycled between two pressures [Formula: see text] and [Formula: see text] for a fixed pore pressure [Formula: see text], following a fixed schedule of pressure changes, until repeatable values of velocity were obtained. (At any intermediate pressure the velocity measured for increasing pressure was different from the value for decreasing pressure, giving rise to a hysteresis cycle). When the same schedule of pressure changes for the differential pressure [Formula: see text] was followed by holding [Formula: see text] fixed and varying [Formula: see text], the measured velocities followed the same hysteresis curve within the limits of experimental accuracy. In brief, when hysteresis was taken into account, changes in pore and confining pressures were equally effective in changing velocity. In their article, Christensen and Wang do not refer to hysteresis; perhaps they would like to comment on its relevance.


2006 ◽  
Author(s):  
S. B. Turuntaev ◽  
E. V. Zenchenko ◽  
A. N. Dmitriev

Geophysics ◽  
2005 ◽  
Vol 70 (6) ◽  
pp. O39-O50 ◽  
Author(s):  
Øyvind Kvam ◽  
Martin Landrø

In an exploration context, pore-pressure prediction from seismic data relies on the fact that seismic velocities depend on pore pressure. Conventional velocity analysis is a tool that may form the basis for obtaining interval velocities for this purpose. However, velocity analysis is inaccurate, and in this paper we focus on the possibilities and limitations of using velocity analysis for pore-pressure prediction. A time-lapse seismic data set from a segment that has undergone a pore-pressure increase of 5 to 7 MPa between the two surveys is analyzed for velocity changes using detailed velocity analysis. A synthetic time-lapse survey is used to test the sensitivity of the velocity analysis with respect to noise. The analysis shows that the pore-pressure increase cannot be detected by conventional velocity analysis because the uncertainty is much greater than the expected velocity change for a reservoir of the given thickness and burial depth. Finally, by applying amplitude-variation-with-offset (AVO) analysis to the same data, we demonstrate that seismic amplitude analysis may yield more precise information about velocity changes than velocity analysis.


1986 ◽  
Vol 89 ◽  
pp. 53-74
Author(s):  
George H. Fisher

AbstractSolar flares are currently understood as the explosive release of energy stored in the form of stressed magnetic fields. In many cases, the released energy seems to take the form of large numbers of electrons accelerated to high energies (the nonthermal electron “thick target” model), or alternatively plasma heated to very high temperatures behind a rapidly moving conduction front (the “thermal” model). The transport of this energy into the remaining portion of the atmosphere results in violent mass motion and strong emission across the electromagnetic spectrum. Radiation processes play a crucial role in determining the ensuing plasma motion.One important phenomenon observed during flares is the appearance in coronal magnetic loops of large amounts of upflowing, soft X-ray emitting plasma at temperatures of 1−2×107 [K]. It is believed that this is due to chromospheric evaporation, the process of heating cool (T - 104[K]) chromospheric material beyond its ability to radiate. Detailed calculations of thick target heating show that if nonthermal electrons heat the chromosphere directly, then the evaporation process can result in explosive upward motion of X-ray emitting plasma if the heating rate exceeds a threshold value. In such a case, upflow velocities approach an upper limit of roughly 2.35 cs as the heating rate is increased beyond the threshold, where cs is the sound speed in the evaporated plasma. This is known as explosive evaporation. If the flare heating rate is less than the threshold, evaporation takes place indirectly through thermal conduction of heat deposited in the corona by the energetic electrons. Upflows in this case are roughly 10 to 20% of the upper limit. Evaporation by thermal model heating always takes place through thermal conduction, and the computed upflow speeds seem to be about 10% to 20% of the upper limit, independent of the energy flux.The pressure increase in the evaporated plasma for either the thick target or thermal model leads to a number of interesting phenomena in the flare chromosphere. The sudden pressure increase initiates a downward moving “chromospheric condensation”, an overdense region which gradually decelerates as it accretes material and propagates into the gravitationally stratified chromosphere. Solutions to an equation of motion for this condensation shows that its motion decays after about one minute of propagation into the chromosphere. When the front of this downflowing region is supersonic relative to the atmosphere ahead of it, a radiating shock will form. If the downflow is rapid enough, the shock strength should be sufficient to excite UV radiation normally associated with the transition region, and furthermore, the radiating shock will be brighter than the transition region. These results lead to a number of observationally testable relationships between the optical and ultraviolet spectra from the condensation and radiating shock.


Sign in / Sign up

Export Citation Format

Share Document