On: “The influence of pore pressure and confining pressure on dynamic elastic properties of Berea sandstone,” by N. I. Christensen and H. F. Wang (GEOPHYSICS, 50, 207–213, February 1985).

Geophysics ◽  
1986 ◽  
Vol 51 (4) ◽  
pp. 1016-1016
Author(s):  
G. H. F. Gardner

The authors present their results as if Berea sandstone were an elastic material; that is, velocities are given as functions of confining and pore pressure. In fact, most rocks are inelastic and velocities depend on the history of the confining and pore pressure, and not just on the present values. Some measurements of hysteresis were reported by Gardner et al. (1965). The confining pressure was cycled between two pressures [Formula: see text] and [Formula: see text] for a fixed pore pressure [Formula: see text], following a fixed schedule of pressure changes, until repeatable values of velocity were obtained. (At any intermediate pressure the velocity measured for increasing pressure was different from the value for decreasing pressure, giving rise to a hysteresis cycle). When the same schedule of pressure changes for the differential pressure [Formula: see text] was followed by holding [Formula: see text] fixed and varying [Formula: see text], the measured velocities followed the same hysteresis curve within the limits of experimental accuracy. In brief, when hysteresis was taken into account, changes in pore and confining pressures were equally effective in changing velocity. In their article, Christensen and Wang do not refer to hysteresis; perhaps they would like to comment on its relevance.

2006 ◽  
Vol 326-328 ◽  
pp. 1797-1800 ◽  
Author(s):  
Qing Chun Zhou ◽  
Hai Bo Li ◽  
Chun He Yang ◽  
Chao Wen Luo

The mechanical properties of rock under high temperature, high geostress and high pore pressure are the basic and important information to assess the safety of underground engineering in west China. Based on the environmental conditions of the west route of south-to-north water transfer project in west China, a series of triaxial tests at confining pressures (0 to 60MPa) and temperatures (25°C to 70°C) as well as pore pressure (0 to 10MPa) have been conducted for a sandstone. It is reported that under the temperatures varying from 25°C to 70°C, the strength of the rock increases with the increment of confining pressure, while the deformation modulus of the rock doesn’t change distinctly with the increment of confining pressures. It is also indicated under the temperatures condition in the experiments, when the confining pressure is lower than 40MPa, the strength of the rock increases with the increment of temperature, whereas when the confining pressure is higher than 40MPa, the strength of rock tend to decrease with increment of temperature. It is further shown that the strength decreases with increasing pore pressure, and the decreasing rates tend to decrease with the increment of confining pressures.


Geophysics ◽  
1993 ◽  
Vol 58 (1) ◽  
pp. 30-38 ◽  
Author(s):  
Gang Yu ◽  
Keeva Vozoff ◽  
David W. Durney

Laboratory measurements are described on Permian coals from Wollongong, New South Wales, Australia related to the dependence of ultrasonic P‐ and S‐wave velocities, attenuation, anisotropy and the dynamic elastic moduli on confining pressure, water saturation, and pore pressure. Five independent stiffness constants are used to represent the elastic anisotropy of the specimens as a function of confining pressure and water saturation. The anisotropy is believed to be controlled mainly by the internal structure of the coals, while the pressure dependence of the constants is controlled mainly by randomly oriented cracks. P‐ and S‐wave dispersions were measured on water‐saturated specimens as confining pressures increased from 2 MPa to 40 MPa. The samples represented cores taken both parallel and perpendicular to bedding planes. Velocities along bedding planes are marginally higher than those across bedding planes. This anisotropy is insensitive to confining pressure. Attenuation was also measured, both normal and parallel to bedding planes, on dry and water‐saturated specimens from 2 MPa to 40 MPa confining pressures. The experimental results show that dynamic elastic properties are potential indicators of the states of stress and saturation in coal seams, and provide necessary information for computer modeling and interpreting seismic surveys carried out to assist mine development.


1967 ◽  
Vol 7 (04) ◽  
pp. 389-408 ◽  
Author(s):  
J.H. Yang ◽  
K.E. Gray

Abstract Results of single-blow bit-tooth impact tests on saturated rocks under elevated confining pressures and zero pore pressure were reported in a previous publication. This paper presents an extension of the earlier work to include a study of crater formation during tooth impact on both gas- and liquid-saturated Berea and Bandera sandstones at elevated confining and pore pressures. The basic data obtained were force-time, displacement-time, velocity-time and force-displacement curves during crater formation. Crater volume was also measured and the mode of crater formation determined. Bit tooth geometry, depth of penetration and velocity of impact were held constant. Results indicate that, with pore fluid present in the rock, failure trends from brittle to ductile as pore pressure is increased at constant confining pressure (pore pressure and borehole pressure were equals For a given rock type, the mode of crater formation was dependent not only upon the nominal effective stress, but also upon the fluid which saturated the rock pore space. When confining pressure and pore pressure were equal (zero nominal effective stress), bit-tooth impact resulted in brittle failure for nitrogen-saturated Berea, and brittle to transitional failure for nitrogen-saturated Bandera; when saturated with liquid both rocks failed in a ductile manner at zero nominal effective stress. Introduction Dynamic wedge penetration tests have been conducted by investigators in several fields, but the failure mechanism of rock under dynamic stresses is not understood completely. The complex action of drilling bits, even considering the action of a single tooth, may be considered as a combination of drag bit and rolling cutter action. Thus, as a first step in understanding rock breakage in oil well drilling, single chisel impact and rock planing are of fundamental importance. For example, Gray and Crisp studied drag bit cutting action at brittle stress states. Simon and Hartman studied the reaction of rocks to vertical impact by means of drop tests. The depth of penetration, crater volume and force-vs-time curves during crater formation were observed. The significance of indexing single-bit impacts has been noted. Garner et al, reported impact tests on impermeable Leuders limestone at atmospheric and elevated confining pressures. In all cases the tests were accomplished on dry rock and pore pressure was considered to be zero. The importance of both confining pressure and pore pressure on the failure characteristics of rock was described. It was found that the yield strength and ductility of porous rock depend on the state of stress under which the sample is tested. The importance of pore pressure on drilling rate in microbit experiments was noted by Cunningham and Eenink, Robinson also pointed out that in drilling the most important parameter in rock failure is the effective stress, where effective stress is defined as confining pressure Pc minus pore pressure Pp. The effect of pore pressure and confining pressure on rock strength was also noted by Serdengecti and Boozer in strain rate tests, and by Gardner, Wyllie and Droschack in elastic wave studies. Until recently all reported wedge impact studies under simulated wellbore stress states have been conducted on dry rock. Maurer reported impact tests on samples saturated with deaerated water. Borehole and formation fluid pressures were equal in these tests except when mud was used in the borehole. With mud in the borehole and a high borehole-to-formation fluid pressure differential, Maurer observed "pseudoplastic" crater formation. Podio and Gray reported impact tests on Berea and Bandera sandstone saturated with pore fluids having wide ranges in viscosities. In Podio and Gray's tests, confining pressure was elevated, but pore pressure and borehole pressure were held fixed at atmospheric pressure. SPEJ P. 389ˆ


2018 ◽  
Vol 58 (1) ◽  
pp. 182 ◽  
Author(s):  
Hossein Salemi ◽  
Stefan Iglauer ◽  
Ali Rezagholilou ◽  
Mohammad Sarmadivaleh

Understanding rock behaviour as a function of pore pressure and confining pressure is crucial for petroleum and geomechanical analysis. Indeed, deformation and local stress variations within hydrocarbon reservoirs and their surroundings occur due to pore pressure changes. Theoretically, pore pressure changes coupled with stress variations in hydrocarbon reservoirs are a function of the Biot’s coefficient, the elastic properties of the rock and the reservoir shape. Thus, in this study, the Biot’s coefficient was measured as a function of porosity, permeability, and volumetric strain for five Gosford sandstone samples. A triaxial loading system was used to measure rock volumetric strain while pore pressure and confining pressure were varied. The constant deformation technique was employed for these experiments; i.e. the variation of pore pressure created a volumetric strain, and the confining pressure required to restore the original volumetric strain was measured to calculate Biot’s coefficient. For the investigated samples, measured liquid permeabilities were in the range of 7–10 mD and Biot’s coefficients were 0.84–0.91. This is consistent with similar investigations by other researchers in which measured Biot’s coefficients were in the range of 0.65–0.90. This study thus illustrates how liquid permeability and the Biot’s coefficient decrease as a function of confining pressure.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. E227-E234 ◽  
Author(s):  
Anyela Morcote ◽  
Gary Mavko ◽  
Manika Prasad

Laboratory ultrasonic velocity measurements of different types of coal demonstrate that their dynamic elastic properties depend on coal rank and applied effective pressure. In spite of the growing interest in coal beds as targets for methane production, the high abundance in sedimentary sequences and the strong influence that they have on seismic response, little data are available on the acoustic properties of coal. Velocities were measured in core plugs parallel and perpendicular to lamination surfaces as a function of confining pressure up to [Formula: see text] in loading and unloading cycles. P- and S-wave velocities and dry bulk and dry shear moduli increase as coal rank increases. Thus, bituminous coal and cannel show lower velocities and moduli than higher ranked coals such as semianthracite and anthracite. The [Formula: see text] relationship for dry samples is linear and covers a relatively wide range of effective pressures and coal ranks. However, there is a pressure dependence on the elastic properties of coal for confining pressures below [Formula: see text]. This pressure sensitivity is related to the presence of microcracks. Finally, the data show that coal has an intrinsic anisotropy at confining pressures above [Formula: see text], the closing pressure for most of the microcracks. This intrinsic anisotropy at high pressures might be due to fine lamination and preferred orientation of the macerals.


1965 ◽  
Vol 5 (04) ◽  
pp. 341-347 ◽  
Author(s):  
John Handin

Abstract Triaxial compression tests with independently applied external confining pressures and internal pore pressures show that the ultimate compressive strengths of representative oil well cements are nearly linear functions of effective pressure the difference between external and internal pressures on the jacketed cylindrical specimens (to 15,000 psi). The strengths are little affected by the test temperature to 350F (not to be confused with the curing temperature). At an effective pressure of 15,000 psi, strengths are in the range of 30,000 to 50,000 psi, comparable to those of sedimentary rocks under similar conditions. The cements become very ductile even under low effective pressures; permanent shortenings of 30 per cent or more are attainable without rupture. Introduction Since the pioneering work of Richart, Brandtzaeg and Brown on the failure of cement under combined compressive stresses, it has been recognized that ultimate compressive strength is greatly enhanced by the application of confining pressure. More recently, McHenry showed that the strength of concrete was a linear function of the effective pressure (the difference between the external confining pressure on a jacketed specimen and the internal fluid pore pressure) at least for a range of 0 to 1,500 psi. The effect of temperature had not been investigated, and no previous systematic triaxial compression testing of materials used for oilwell cementing seems to have been done. The present work was suggested by the late J. M. Bugbee who stated that "consideration of the common application of high-pressure hydraulic fracturing to the initial completion or recompletion of wells, and the large pressure drawdowns in some producing wells, particularly those in abnormally high-pressure gas-condensate reservoirs, raises the question of what is a suitable cement strength for various completions. The intuitive belief exists that cement strength need be no greater than formation strength. Tests should, however, be conducted at downhole conditions."The ultimate compressive strengths of rocks penetrated by the borehole must rise several fold with increasing depth. This marked enhancement of strength is due to the influence of the effective pressure, the total weight per unit area of the overburden less the hydrostatic pore pressure. (The effect of temperature due to the geothermal gradients is relatively small for depths to 30,000 ft.) A significant comparison of the strengths of rocks and cements at downhole conditions requires knowledge of the confined compressive strengths of cements as well. EXPERIMENTAL PROCEDURES The theory and technique of triaxial compression testing are fully discussed in earlier reports. Briefly, cylindrical specimens 1-in. long and 0.5-in. in diameter are jacketed in thin copper tubes of negligible strength, placed in the test chamber and subjected to an external confining pressure of kerosene and loaded axially by the piston at a strain rate of 1 per cent per minute. Pore pressures of water (or kerosene) are applied independently through the hollow piston and are maintained constant during the shortening of the specimen. Tests at sensibly 0 pore pressure are arranged so that any free water in the cement can escape to the atmosphere. (If egress of water were denied, pore pressure would rapidly attain the value of the external confining pressure because of reduction of pore space.) The test chamber can be heated for high-temperature experiments. Unless other-wise noted, the cement samples were air dried for about a week. Recorded during a test are pore and confining pressures, shortening and axial differential force (total force less the product of the confining pressure and the area of the piston). SPEJ P. 341ˆ


Geophysics ◽  
1985 ◽  
Vol 50 (2) ◽  
pp. 207-213 ◽  
Author(s):  
N. I. Christensen ◽  
H. F. Wang

Compressional‐ and shear‐wave velocities of watersaturated Berea sandstone have been measured as functions of confining and pore pressures to 2 kbar. The velocities, measured by the pulse transmission technique, were obtained at selected pressures for the purpose of evaluating the relative importance of confining pressure and pore pressure on elastic wave velocities and derived dynamic elastic constants. Changes in Berea sandstone velocities resulting from changes in confining pressure are not exactly canceled by equivalent changes in pore pressure. For properties that involve significant bulk compression (compressional‐wave velocities and bulk modulus) an incremental change in pore pressure does not entirely cancel a similar change in confining pressure. On the other hand, it is shown that a pore pressure increment more than cancels an equivalent change in confining pressure for properties that depend significantly on rigidity (shear‐wave velocity and Poisson’s ratio). This behavior (as well as observed wave amplitudes) is related to the presence of high‐compressibility clay that lines grains and pores within the quartz framework of the Berea sandstone.


Geophysics ◽  
1986 ◽  
Vol 51 (4) ◽  
pp. 1016-1017
Author(s):  
N. I. Christensen ◽  
H. F. Wang

Gardner suggests that velocity data in which confining pressure changes are not canceled by equal pore pressure changes may be due to hysteresis effects that prevent velocity from being a unique function of the differential pressure. This is supported by shear velocity measurements in dry Berea sandstone as a function of cyclic variations of differential pressure (Gardner et al., 1965). High porosity and clayey sandstones indeed can demonstrate this behavior. Cyclic pressure variations can lead to work hardening and other inelastic behavior. For our measurements, however, we believe that the effects of hysteresis were minimal because of (1) the pressure cycle followed to obtain velocity as a function of pore and confining pressures, and (2) the large elapsed time between our measurements.


Sign in / Sign up

Export Citation Format

Share Document