scholarly journals Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces

2013 ◽  
Vol 1 ◽  
pp. 232-254 ◽  
Author(s):  
Zoltán M. Balogh ◽  
Jeremy T. Tyson ◽  
Kevin Wildrick

Abstract We quantify the extent to which a supercritical Sobolev mapping can increase the dimension of subsets of its domain, in the setting of metric measure spaces supporting a Poincaré inequality. We show that the set of mappings that distort the dimensions of sets by the maximum possible amount is a prevalent subset of the relevant function space. For foliations of a metric space X defined by a David–Semmes regular mapping Π : X → W, we quantitatively estimate, in terms of Hausdorff dimension in W, the size of the set of leaves of the foliation that are mapped onto sets of higher dimension. We discuss key examples of such foliations, including foliations of the Heisenberg group by left and right cosets of horizontal subgroups.

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Estibalitz Durand-Cartagena ◽  
Sylvester Eriksson-Bique ◽  
Riikka Korte ◽  
Nageswari Shanmugalingam

Abstract We consider two notions of functions of bounded variation in complete metric measure spaces, one due to Martio and the other due to Miranda Jr. We show that these two notions coincide if the measure is doubling and supports a 1-Poincaré inequality. In doing so, we also prove that if the measure is doubling and supports a 1-Poincaré inequality, then the metric space supports a Semmes family of curves structure.


2017 ◽  
Vol 2019 (8) ◽  
pp. 2241-2265
Author(s):  
Scott Zimmerman

Abstract Wenger and Young proved that the pair $(\mathbb{R}^m,\mathbb{H}^n)$ has the Lipschitz extension property for $m \leq n$ where $\mathbb{H}^n$ is the sub-Riemannian Heisenberg group. That is, for some $C>0$, any $L$-Lipschitz map from a subset of $\mathbb{R}^m$ into $\mathbb{H}^n$ can be extended to a $CL$-Lipschitz mapping on $\mathbb{R}^m$. In this article, we construct Sobolev extensions of such Lipschitz mappings with no restriction on the dimension $m$. We prove that any Lipschitz mapping from a compact subset of $\mathbb{R}^m$ into $\mathbb{H}^n$ may be extended to a Sobolev mapping on any bounded domain containing the set. More generally, we prove this result in the case of mappings into any Lipschitz $(n-1)$-connected metric space.


2018 ◽  
Vol 11 (4) ◽  
pp. 387-404 ◽  
Author(s):  
Hiroaki Aikawa ◽  
Anders Björn ◽  
Jana Björn ◽  
Nageswari Shanmugalingam

AbstractThe variational capacity {\operatorname{cap}_{p}} in Euclidean spaces is known to enjoy the density dichotomy at large scales, namely that for every {E\subset{\mathbb{R}}^{n}},\inf_{x\in{\mathbb{R}}^{n}}\frac{\operatorname{cap}_{p}(E\cap B(x,r),B(x,2r))}% {\operatorname{cap}_{p}(B(x,r),B(x,2r))}is either zero or tends to 1 as {r\to\infty}. We prove that this property still holds in unbounded complete geodesic metric spaces equipped with a doubling measure supporting a p-Poincaré inequality, but that it can fail in nongeodesic metric spaces and also for the Sobolev capacity in {{\mathbb{R}}^{n}}. It turns out that the shape of balls impacts the validity of the density dichotomy. Even in more general metric spaces, we construct families of sets, such as John domains, for which the density dichotomy holds. Our arguments include an exact formula for the variational capacity of superlevel sets for capacitary potentials and a quantitative approximation from inside of the variational capacity.


2017 ◽  
Vol 5 (1) ◽  
pp. 47-68
Author(s):  
Bang-Xian Han ◽  
Andrea Mondino

Abstract The goal of the paper is to study the angle between two curves in the framework of metric (and metric measure) spaces. More precisely, we give a new notion of angle between two curves in a metric space. Such a notion has a natural interplay with optimal transportation and is particularly well suited for metric measure spaces satisfying the curvature-dimension condition. Indeed one of the main results is the validity of the cosine formula on RCD*(K, N) metric measure spaces. As a consequence, the new introduced notions are compatible with the corresponding classical ones for Riemannian manifolds, Ricci limit spaces and Alexandrov spaces.


2012 ◽  
Vol 64 (4) ◽  
pp. 892-923 ◽  
Author(s):  
Tuomas Hytönen ◽  
Suile Liu ◽  
Dachun Yang ◽  
Dongyong Yang

Abstract Let (𝒳, d, μ) be a separable metric measure space satisfying the known upper doubling condition, the geometrical doubling condition, and the non-atomic condition that μ(﹛x﹜) = 0 for all x ∈ 𝒳. In this paper, we show that the boundedness of a Calderón–Zygmund operator T on L2(μ) is equivalent to that of T on Lp(μ) for some p ∈ (1,∞), and that of T from L1(μ) to L1,∞(μ). As an application, we prove that if T is a Calderón–Zygmund operator bounded on L2(μ), then its maximal operator is bounded on Lp(μ) for all p ∈ (1,∞) and from the space of all complex-valued Borel measures on 𝒳 to L1,∞(μ). All these results generalize the corresponding results of Nazarov et al. on metric spaces with measures satisfying the so-called polynomial growth condition.


2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Heikki Hakkarainen ◽  
Juha Kinnunen ◽  
Panu Lahti

AbstractIn this article we study minimizers of functionals of linear growth in metric measure spaces. We introduce the generalized problem in this setting, and prove existence and local boundedness of the minimizers. We give counterexamples to show that in general, minimizers are not continuous and can have jump discontinuities inside the domain.


Author(s):  
Yu Kitabeppu ◽  
Sajjad Lakzian

AbstractIn this paper,we give the characterization of metric measure spaces that satisfy synthetic lower Riemannian Ricci curvature bounds (so called RCD*(K, N) spaces) with non-empty one dimensional regular sets. In particular, we prove that the class of Ricci limit spaces with Ric ≥ K and Hausdorff dimension N and the class of RCD*(K, N) spaces coincide for N < 2 (They can be either complete intervals or circles). We will also prove a Bishop-Gromov type inequality (that is ,roughly speaking, a converse to the Lévy-Gromov’s isoperimetric inequality and was previously only known for Ricci limit spaces) which might be also of independent interest.


2007 ◽  
Vol 59 (6) ◽  
pp. 1135-1153 ◽  
Author(s):  
Anders Björn ◽  
Jana Björn ◽  
Nageswari Shanmugalingam

AbstractWe study when characteristic and Hölder continuous functions are traces of Sobolev functions on doubling metric measure spaces. We provide analytic and geometric conditions sufficient for extending characteristic and Hölder continuous functions into globally defined Sobolev functions.


2004 ◽  
Vol 47 (3) ◽  
pp. 709-752 ◽  
Author(s):  
Dachun Yang ◽  
Yong Lin

AbstractNew spaces of Lipschitz type on metric-measure spaces are introduced and they are shown to be just the well-known Besov spaces or Triebel–Lizorkin spaces when the smooth index is less than 1. These theorems also hold in the setting of spaces of homogeneous type, which include Euclidean spaces, Riemannian manifolds and some self-similar fractals. Moreover, the relationships amongst these Lipschitz-type spaces, Hajłasz–Sobolev spaces, Korevaar–Schoen–Sobolev spaces, Newtonian Sobolev space and Cheeger–Sobolev spaces on metric-measure spaces are clarified, showing that they are the same space with equivalence of norms. Furthermore, a Sobolev embedding theorem, namely that the Lipschitz-type spaces with large orders of smoothness can be embedded in Lipschitz spaces, is proved. For metric-measure spaces with heat kernels, a Hardy–Littlewood–Sobolev theorem is establish, and hence it is proved that Lipschitz-type spaces with small orders of smoothness can be embedded in Lebesgue spaces.AMS 2000 Mathematics subject classification: Primary 42B35. Secondary 46E35; 58J35; 43A99


Sign in / Sign up

Export Citation Format

Share Document