scholarly journals Word series high-order averaging of highly oscillatory differential equations with delay

2019 ◽  
Vol 4 (2) ◽  
pp. 445-454 ◽  
Author(s):  
J. M. Sanz-Serna ◽  
Beibei Zhu

AbstractWe show that, when the delay is an integer multiple of the forcing period, it is possible to obtain easily high-order averaged versions of periodically forced systems of delay differential equations with constant delay. Our approach is based on the use of word series techniques to obtain high-order averaged equations for differential equations without delay.

2001 ◽  
Vol 11 (03) ◽  
pp. 737-753 ◽  
Author(s):  
TATYANA LUZYANINA ◽  
KOEN ENGELBORGHS ◽  
DIRK ROOSE

In this paper we apply existing numerical methods for bifurcation analysis of delay differential equations with constant delay to equations with state-dependent delay. In particular, we study the computation, continuation and stability analysis of steady state solutions and periodic solutions. We collect the relevant theory and describe open theoretical problems in the context of bifurcation analysis. We present computational results for two examples and compare with analytical results whenever possible.


2000 ◽  
Vol 7 (3) ◽  
pp. 577-584
Author(s):  
Jitsuro Sugie ◽  
Mitsuru Iwasaki

Abstract Our concern is to consider delay differential equations of Euler type. Necessary and sufficient conditions for the oscillation of solutions are given. The results extend some famous facts about Euler differential equations without delay.


2019 ◽  
Vol 43 (3) ◽  
pp. 1339-1352 ◽  
Author(s):  
Sevin GÜMGÜM ◽  
Demet ERSOY ÖZDEK ◽  
Gökçe ÖZALTUN

2018 ◽  
Vol 39 (3) ◽  
pp. 1110-1133 ◽  
Author(s):  
J M Sanz-Serna ◽  
Beibei Zhu

Abstract We propose and analyse a heterogeneous multiscale method for the efficient integration of constant-delay differential equations subject to fast periodic forcing. The stroboscopic averaging method suggested here may provide approximations with $\mathscr{O}\big (H^{2}+1/\varOmega ^{2}\big )$ errors with a computational effort that grows like $H^{-1}$ (the inverse of the step size), uniformly in the forcing frequency $\varOmega $.


Sign in / Sign up

Export Citation Format

Share Document