THE EFFECT OF TEMPERATURE ON THE SORPTION PROPERTIES OF COAL FROM UPPER SILESIAN COAL BASIN, POLAND / WPŁYW ZMIAN TEMPERATURY NA WŁASNOŚCI SORPCYJNE NA PODSTAWIE BADAŃ WYBRANYCH WĘGLI Z GÓRNOŚLĄSKIEGO ZAGŁĘBIA WĘGLOWEGO

2013 ◽  
Vol 58 (4) ◽  
pp. 1163-1176 ◽  
Author(s):  
Mirosław Wierzbicki

Abstract This paper presents the results of studies on gas sorption performed by means of the gravimetric method. The tests were performed on two coal samples of different metamorphism degrees, came from two regions of Upper Silesian Coal Basin, Poland. The changes in sorption capacity of coals were measured in the pressure range from 0.1 MPa to 17 MPa and in temperatures ranging from 291K to 333K. Coal of a lower coalification degree was a better methane sorbent. Changes in sorption capacity of tested coals were linearly dependent on the temperature. The increase in temperature of 10K reduces the Langmuir sorption of about 0.7-0.8 [cm3/g]. Such increase of temperature causes a nonlinear increase of the Langmuir pressure (b-1). These results showed that the rise of rock temperature, caused by geothermal gradient, can induce a significant increase of equilibrium pressure of methane in coal seam. An increase of coal seam temperature may cause an increase of gas and coal outburst risk in a coal mine.

2013 ◽  
Vol 58 (1) ◽  
pp. 55-72
Author(s):  
Libor Doležal ◽  
Józef Knechtel ◽  
Antonín Taufer ◽  
Ludvík Trávníček

Knowledge of the temperature of rock mass is no doubt of substantial meaning, both for the solution of economicaly demanding protection of mine workers in difficult microclimatic environment and for perspective usage of geothermal energy from the depth of the earth. International cooperation of our and Polish specialists is in this sense more than welcome, also because the exploitation of coal seams takes place in the same Upper Silesia rock coal basin. This profesional article is concentrated on complex analysis of temperature fields of the Ostrava- Karviná district, mainly from results of thermologging measurements in geological survey boreholes both on surface and underground, and also from the actual temperature measurements in the coal mines. One chapter of this article describes the original approach to the survey of temperature field and its prognosis in the Polish part of the Upper Silesia coal basin by a researcher from GIG Katowice. The most suitable method of analysis of primary temperature field seemed the preparation of isocurves of temperature(isothermal lines) for the existing mine working areas, even if the method of obtaining them was different. The Czech method is based on determination of the quantitative dependence of temperature on the rock mass depth from the abovementioned measurement results, calculation of geothermal gradients and the following recalculation of real temperature values for various depth levels. Then isothermal lines for these depth levels are created together with colour distingushing of their value limits. The Polish method is sufficiently described in a dedicated chapter. The conclusion of the article underlines the decisive role of the structuraly tectonic composition of the rock mass on the temperature field in the long term thermic evolution of the Earth.


Terra Nova ◽  
2022 ◽  
Author(s):  
Jerzy Nawrocki ◽  
Justyna Ciesielczuk ◽  
Dominik Jura ◽  
Monika J. Fabiańska ◽  
Magdalena Misz‐Kennan

2020 ◽  
Author(s):  
Justyna Ciesielczuk ◽  
Jerzy Nawrocki ◽  
Dominik Jura ◽  
Monika J. Fabiańska ◽  
Magdalena Misz-Kennan ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5807
Author(s):  
Katarzyna Godyń ◽  
Barbara Dutka

Coals from the south-western part of the Upper Silesian Coal Basin have a strong outburst susceptibility. The objective of this study was to identify the influence of coalification degree on methane sorption and micro scale strength properties of 24 coals from Jastrzębie Zdrój. Coal samples showed a reflectance Ro between 0.98 and 1.25%. Sorption measurements were carried out by gravimetric method. Sorption capacities were determined at mean deposit temperature of 35 °C. Using the unipore model and solution of Fick’s second law, the effective diffusion coefficients of methane in the studied coals were obtained. The Vickers method was used to study the microhardness and the modulus of elasticity. It has been shown that the increase in the coalification degree reduces the sorption capacity of coal and also reduces the rate of methane emission. Coals the most susceptible to outbursts, were the most brittle. With the increase in Ro, the methane seam pressure p increased as well as desorbable methane content DMC, both due to the reduction in the sorption capacity of coal. The increased dp index is a warning sign indicating an increased total methane content of coal seam, an increased seam pressure or an alternation of coal structure.


2013 ◽  
Vol 63 (2) ◽  
pp. 271-281 ◽  
Author(s):  
Magdalena Kokowska-Pawłowska ◽  
Jacek Nowak

Abstract Kokowska-Pawłowska, M. and Nowak, J. 2013. Phosphorus minerals in tonstein; coal seam 405 at Sośnica- Makoszowy coal mine, Upper Silesia, southern Poland. Acta Geologica Polonica, 63 (2), 271-281. Warszawa. The paper presents results of research on tonstein, which constitutes an interburden in coal seam 405 at the Sośnica- Makoszowy coal mine, Makoszowy field (mining level 600 m), Upper Silesia, southern Poland. The mineral and chemical compositions of the tonstein differ from the typical compositions described earlier for tonsteins from Upper Silesia Coal Basin area. Additionally, minerals present in the tonsteins include kaolinite, quartz, kaolinitised biotite and feldspars. The presence of the phosphatic minerals apatite and goyazite has been recognized. The presence of gorceixite and crandallite is also possible. The contents of CaO (5.66 wt%) and P2O5 (6.2 wt%) are remarkably high. Analysis of selected trace elements demonstrated high contents of Sr (4937 ppm) and Ba (4300 ppm), related to the phosphatic minerals. On the basis of mineral composition the tonstein has been identified as a crystalline tonstein, transitional to a multiplied one.


Sign in / Sign up

Export Citation Format

Share Document