scholarly journals Simulation of a Power System Considering Active Power Losses and Seasons

2021 ◽  
Vol 18 (1) ◽  
pp. 1-7
Author(s):  
Lucian-Ioan Dulău ◽  
Dorin Bică

Abstract In this paper is presented the simulation of a power system. The simulations performed are considering the seasons (spring, summer, autumn and winter). The system has 39 buses, 46 power lines, 13 generating units, 19 loads and 2 storage units. Of the 13 generating units, 3 are distributed generation sources based on renewable energy. There are also 2 battery storage units. The simulation considers the active power supplied by the generating and storage units, respectively the active power losses. The results give the power supplied by each generating unit for each season.

2016 ◽  
Vol 2016 (4) ◽  
pp. 23-25
Author(s):  
A.V. Krasnozhon ◽  
◽  
R.O. Buinyi ◽  
I.V. Pentegov ◽  
◽  
...  

2021 ◽  
Vol 4 (2) ◽  
pp. 38-43
Author(s):  
Linta Khalil ◽  
Mughees Riaz ◽  
M.Arslan Iqbal Awan ◽  
M.Kamran Liaquat Bhatti ◽  
Rabbia Siddique ◽  
...  

Utilization of new technologies and people lifestyle has greatly affected the world’s electricity market. This demands to design innovative renewable energy systems for efficient use of green energy. In terms of greenhouse gas emissions, electricity from traditional energy supplies has become particularly harmful for the world. To decrease the reliance on fossil fuels, it is need of time to enhance the renewable energy integration in the conventional energy systems. Renewable DGs integration in existing energy systems is not a simple task. To overcome challenges caused by enhanced penetration of renewable energy systems in existing networks, adaptation of smart techniques is essential. DGs Optimal size and selection of their suitable location for integration is crucial for cost effective power delivery to the consumers without compromising the quality of power. This paper presents impartial performance management by optimal network reconfiguration in parallel with renewable DGs and selecting suitable size for reducing active power losses, pollutant gas emissions and costs of annual operation. For analysis of active power losses, Fuzzy and SPEA2 based algorithms are used in MATLAB with IEEE BUS14 acting as load bus. While the cost of power generation and pollutant gases emissions are estimated using HOMER Pro software.


Author(s):  
Shah Mohazzem Hossain ◽  
Abdul Hasib Chowdhury

<span lang="EN-US">Large amount of active power losses and low voltage profile are the two major issues concerning the integration of distributed generations with existing power system networks. High </span><em><span lang="EN-US">R</span></em><span lang="EN-US">/</span><em><span lang="EN-US">X</span></em><span lang="EN-US"> ratio and long distance of radial network further aggravates the issues. Optimal placement of distributed generators can address these issues significantly by alleviating active power losses and ameliorating voltage profile in a cost effective manner. In this research, multi-objective optimal placement problem is decomposed into minimization of total active power losses, maximization of bus voltage profile enhancement and minimization of total generation cost of a power system network for static and dynamic load characteristics. Optimum utilization factor for installed generators and available loads is scaled by the analysis of yearly load-demand curve of a network. The developed algorithm of N-bus system is implemented in IEEE-14 bus standard test system to demonstrate the efficacy of the proposed method in different loading conditions.</span>


2020 ◽  
Vol 220 ◽  
pp. 01015
Author(s):  
E.V. Tumaeva ◽  
S.S . Kuzin ◽  
I.F. Aflyatunov ◽  
T.G. Makuseva

Residential and industrial buildings with large territorial dimensions, have mainly radial power supply schemes, which feed a large number of small and medium capacity 0.4 kV induction motors. For their power supply copper or aluminum cables of small cross-section (with high active resistance) are used. Calculations of electricity losses in such lines show significant values. In order to reduce active power losses in 0.4 kV cable lines, the optimization problem of minimizing active power losses in the radial power supply circuit is solved by optimal distribution of reactive power of a given value between compensating devices. The single-line scheme of power supply of a group of pumps of technological installation of petrochemical production is considered, the mathematical model of the optimization problem on criterion of minimum of active losses in power lines from reactive power flow is made, which limitations are presented as a system of linear algebraic equations. Results of distribution of optimum values of reactive power between compensating devices of asynchronous motors at maintenance of the set tg φ are received. The quantitative estimation of active power loss reduction in power lines at use of capacitor units, which reactive power is optimally distributed, is given.


Electricity ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 37-59
Author(s):  
Omar H. Abdalla ◽  
Hady H. Fayek ◽  
Abdel Ghany M. Abdel Ghany

This paper presents techniques for the application of tertiary and secondary voltage control through the use of intelligent proportional integral derivative (PID) controllers and the wide area measurement system (WAMS) in the IEEE 39 bus system (New England system). The paper includes power system partitioning, pilot bus selection, phasor measurement unit (PMU) placement, and optimal secondary voltage control parameter calculations to enable the application of the proposed voltage control. The power system simulation and analyses were performed using the DIgSILENT and MATLAB software applications. The optimal PMU placement was performed in order to apply secondary voltage control. The tertiary voltage control was performed through an optimal power flow optimization process in order to minimize the active power losses. Two different methods were used to design the PID secondary voltage control, namely, genetic algorithm (GA) and neural network based on genetic algorithm (NNGA). A comparison of system performances using these two methods under different operating conditions is presented. The results show that NNGA secondary PID controllers are more robust than GA ones. The paper also presents a comparison between system performance with and without secondary voltage control, in terms of voltage deviation index and total active power losses. The graph theory is used in system partitioning, and sensitivity analysis is used in pilot bus selection, the results of which proved their effectiveness.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Neda Hantash ◽  
Tamer Khatib ◽  
Maher Khammash

In this paper, an improved particle swarm optimization method (PSO) is proposed to optimally size and place a DG unit in an electrical power system so as to improve voltage profile and reduce active power losses in the system. An IEEE 34 distribution bus system is used as a case study for this research. A new equation of weight inertia is proposed so as to improve the performance of the PSO conventional algorithm. This development is done by controlling the inertia weight which affects the updating velocity of particles in the algorithm. Matlab codes are developed for the adapted electrical power system and the improved PSO algorithm. Results show that the proposed PSO algorithm successfully finds the optimal size and location of the desired DG unit with a capacity of 1.6722 MW at bus number 10. This makes the voltage magnitude of the selected bus equal to 1.0055 pu and improves the status of the electrical power system in general. The minimum value of fitness losses using the applied algorithm is found to be 0.0.0406 while the average elapsed time is 62.2325 s. In addition to that, the proposed PSO algorithm reduces the active power losses by 31.6%. This means that the average elapsed time is reduced by 21% by using the proposed PSO algorithm as compared to the conventional PSO algorithm that is based on the liner inertia weight equation.


Tehnika ◽  
2020 ◽  
Vol 75 (6) ◽  
pp. 749-755
Author(s):  
Stevan Rakočević ◽  
Martin Ćalasan ◽  
Tatjana Konjić

In this paper, CONOPT solver, embedded in program GAMS, is proposed for optimal power flow analysis in distribution network with renewable energy sources. CONOPT solver possibilities have been tested on IEEE 33 test system solving a problem o f minimizing active power losses in the network. Locations and sizes o f renewable energy sources were taken form available literature. The results obtained using CONOPT solver have been compared with results obtained by using metaheuristic and hybrid algorithms. It is shown that the CONOPT solver gives better results in terms o f minimum values o f active power losses.


Sign in / Sign up

Export Citation Format

Share Document