Stability and controllability of switched systems

2013 ◽  
Vol 61 (3) ◽  
pp. 547-555 ◽  
Author(s):  
J. Klamka ◽  
A. Czornik ◽  
M. Niezabitowski

Abstract The study of properties of switched and hybrid systems gives rise to a number of interesting and challenging mathematical problems. This paper aims to briefly survey recent results on stability and controllability of switched linear systems. First, the stability analysis for switched systems is reviewed. We focus on the stability analysis for switched linear systems under arbitrary switching, and we highlight necessary and sufficient conditions for asymptotic stability. After that, we review the controllability results.

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yuangong Sun ◽  
Zhaorong Wu ◽  
Fanwei Meng

Lyapunov functions play a key role in the stability analysis of complex systems. In this paper, we study the existence of a class of common weak linear copositive Lyapunov functions (CWCLFs) for positive switched linear systems (PSLSs) which generalize the conventional common linear copositive Lyapunov functions (CLCLFs) and can be used as handy tool to deal with the stability of PSLSs not covered by CLCLFs. We not only establish necessary and sufficient conditions for the existence of CWCLFs but also clearly describe the algebraic structure of all CWCLFs. Numerical examples are also given to demonstrate the effectiveness of the obtained results.


Author(s):  
Tadeusz Kaczorek

New stability conditions for positive continuous-discrete 2D linear systemsNew necessary and sufficient conditions for asymptotic stability of positive continuous-discrete 2D linear systems are established. Necessary conditions for the stability are also given. The stability tests are demonstrated on numerical examples.


2009 ◽  
Vol 57 (3) ◽  
pp. 289-292 ◽  
Author(s):  
T. Kaczorek

Asymptotic stability of positive fractional 2D linear systemsNew necessary and sufficient conditions for the asymptotic stability of the positive fractional 2D systems are established. It is shown that the checking of the asymptotic stability of positive fractional 2D linear systems can be reduced to testing the stability of corresponding 1D positive linear systems.


1982 ◽  
Vol 104 (1) ◽  
pp. 27-32 ◽  
Author(s):  
S. N. Singh

Using the invariance principle of LaSalle [1], sufficient conditions for the existence of linear and nonlinear control laws for local and global asymptotic stability of nonlinear Hamiltonian systems are derived. An instability theorem is also presented which identifies the control laws from the given class which cannot achieve asymptotic stability. Some of the stability results are based on certain results for the univalence of nonlinear maps. A similar approach for the stabilization of bilinear systems which include nonconservative systems in elasticity is used and a necessary and sufficient condition for stabilization is obtained. An application to attitude control of a gyrostat Satellite is presented.


Author(s):  
Mikołaj Busłowicz ◽  
Andrzej Ruszewski

Computer methods for stability analysis of the Roesser type model of 2D continuous-discrete linear systemsAsymptotic stability of models of 2D continuous-discrete linear systems is considered. Computer methods for investigation of the asymptotic stability of the Roesser type model are given. The methods require computation of eigenvalue-loci of complex matrices or evaluation of complex functions. The effectiveness of the stability tests is demonstrated on numerical examples.


Author(s):  
Najah F. Jasim

This paper addresses sufficient conditions for asymptotic stability of classes of nonlinear switched systems with external disturbances and arbitrarily fast switching signals. It is shown that asymptotic stability of such systems can be guaranteed if each subsystem satisfies certain variants of observability or 0-distinguishability properties. In view of this result, further extensions of LaSalle stability theorem to nonlinear switched systems with arbitrary switching can be obtained based on these properties. Moreover, the main theorems of this paper provide useful tools for achieving asymptotic stability of dynamic systems undergoing Zeno switching.


2013 ◽  
Vol 61 (2) ◽  
pp. 349-352
Author(s):  
T. Kaczorek

Abstract The asymptotic stability of positive fractional switched continuous-time linear systems for any switching is addressed. Simple sufficient conditions for the asymptotic stability of the positive fractional systems are established. It is shown that the positive fractional switched systems are asymptotically stable for any switchings if the sum of entries of every column of the matrices of all subsystems is negative.


2016 ◽  
Vol 26 (4) ◽  
pp. 441-452 ◽  
Author(s):  
Andrzej Ruszewski

Abstract The stability problems of fractional discrete-time linear scalar systems described by the new model are considered. Using the classical D-partition method, the necessary and sufficient conditions for practical stability and asymptotic stability are given. The considerations are il-lustrated by numerical examples.


Sign in / Sign up

Export Citation Format

Share Document