Stabilizing Feedback Controls for Nonlinear Hamiltonian Systems and Nonconservative Bilinear Systems in Elasticity

1982 ◽  
Vol 104 (1) ◽  
pp. 27-32 ◽  
Author(s):  
S. N. Singh

Using the invariance principle of LaSalle [1], sufficient conditions for the existence of linear and nonlinear control laws for local and global asymptotic stability of nonlinear Hamiltonian systems are derived. An instability theorem is also presented which identifies the control laws from the given class which cannot achieve asymptotic stability. Some of the stability results are based on certain results for the univalence of nonlinear maps. A similar approach for the stabilization of bilinear systems which include nonconservative systems in elasticity is used and a necessary and sufficient condition for stabilization is obtained. An application to attitude control of a gyrostat Satellite is presented.

2013 ◽  
Vol 61 (3) ◽  
pp. 547-555 ◽  
Author(s):  
J. Klamka ◽  
A. Czornik ◽  
M. Niezabitowski

Abstract The study of properties of switched and hybrid systems gives rise to a number of interesting and challenging mathematical problems. This paper aims to briefly survey recent results on stability and controllability of switched linear systems. First, the stability analysis for switched systems is reviewed. We focus on the stability analysis for switched linear systems under arbitrary switching, and we highlight necessary and sufficient conditions for asymptotic stability. After that, we review the controllability results.


2016 ◽  
Vol 26 (4) ◽  
pp. 441-452 ◽  
Author(s):  
Andrzej Ruszewski

Abstract The stability problems of fractional discrete-time linear scalar systems described by the new model are considered. Using the classical D-partition method, the necessary and sufficient conditions for practical stability and asymptotic stability are given. The considerations are il-lustrated by numerical examples.


1995 ◽  
Vol 117 (B) ◽  
pp. 145-153 ◽  
Author(s):  
D. S. Bernstein ◽  
S. P. Bhat

Necessary and sufficient conditions for Lyapunov stability, semistability and asymptotic stability of matrix second-order systems are given in terms of the coefficient matrices. Necessary and sufficient conditions for Lyapunov stability and instability in the absence of viscous damping are also given. These are used to derive several known stability and instability criteria as well as a few new ones. In addition, examples are given to illustrate the stability conditions.


Author(s):  
Tadeusz Kaczorek

New stability conditions for positive continuous-discrete 2D linear systemsNew necessary and sufficient conditions for asymptotic stability of positive continuous-discrete 2D linear systems are established. Necessary conditions for the stability are also given. The stability tests are demonstrated on numerical examples.


Author(s):  
M. Busłowicz

Abstract The stability problem of continuous-time linear fractional order systems with state delay is considered. New simple necessary and sufficient conditions for the asymptotic stability are established. The conditions are given in terms of eigenvalues of the state matrix and time delay. It is shown that in the complex plane there exists such a region that location in this region of all eigenvalues of the state matrix multiplied by delay in power equal to the fractional order is necessary and sufficient for the asymptotic stability. Parametric description of boundary of this region is derived and simple new analytic necessary and sufficient conditions for the stability are given. Moreover, it is shown that the stability of the fractional order system without delay is necessary for the stability of this system with delay. The considerations are illustrated by a numerical example.


1995 ◽  
Vol 117 (B) ◽  
pp. 145-153 ◽  
Author(s):  
D. S. Bernstein ◽  
S. P. Bhat

Necessary and sufficient conditions for Lyapunov stability, semistability and asymptotic stability of matrix second-order systems are given in terms of the coefficient matrices. Necessary and sufficient conditions for Lyapunov stability and instability in the absence of viscous damping are also given. These are used to derive several known stability and instability criteria as well as a few new ones. In addition, examples are given to illustrate the stability conditions.


Author(s):  
G. V. Alferov ◽  
G. G. Ivanov ◽  
P. A. Efimova ◽  
A. S. Sharlay

To study the dynamics of mechanical systems and to define the construction parameters and control laws, it is necessary to have computational models accurately describing properties of real mechanisms. From a mathematical point of view, the computational models of mechanical systems are actually the systems of differential equations. These models can contain equations that also describe non-mechanical phenomena. In this chapter, the problems of stability and asymptotic stability conditions for the motion of mechanical systems with holonomic and non-holonomic constraints are under consideration. Stability analysis for the systems of differential equations is given in term of the second Lyapunov's method. With the use of the set-theoretic approach, the necessary and sufficient conditions for stability and asymptotic stability of zero solution of the considered system are formulated. The proposed approaches can be used to study the stability of the motion for robot manipulators, transport, space, and socio-economic systems.


2009 ◽  
Vol 57 (3) ◽  
pp. 289-292 ◽  
Author(s):  
T. Kaczorek

Asymptotic stability of positive fractional 2D linear systemsNew necessary and sufficient conditions for the asymptotic stability of the positive fractional 2D systems are established. It is shown that the checking of the asymptotic stability of positive fractional 2D linear systems can be reduced to testing the stability of corresponding 1D positive linear systems.


2009 ◽  
Vol 16 (4) ◽  
pp. 597-616
Author(s):  
Shota Akhalaia ◽  
Malkhaz Ashordia ◽  
Nestan Kekelia

Abstract Necessary and sufficient conditions are established for the stability in the Lyapunov sense of solutions of a linear system of generalized ordinary differential equations 𝑑𝑥(𝑡) = 𝑑𝐴(𝑡) · 𝑥(𝑡) + 𝑑𝑓(𝑡), where and are, respectively, matrix- and vector-functions with bounded total variation components on every closed interval from . The results are realized for the linear systems of impulsive, ordinary differential and difference equations.


Sign in / Sign up

Export Citation Format

Share Document