linear scalar
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 19)

H-INDEX

19
(FIVE YEARS 2)

Author(s):  
Peter Hintz

AbstractWe prove Price’s law with an explicit leading order term for solutions $$\phi (t,x)$$ ϕ ( t , x ) of the scalar wave equation on a class of stationary asymptotically flat $$(3+1)$$ ( 3 + 1 ) -dimensional spacetimes including subextremal Kerr black holes. Our precise asymptotics in the full forward causal cone imply in particular that $$\phi (t,x)=c t^{-3}+{\mathcal {O}}(t^{-4+})$$ ϕ ( t , x ) = c t - 3 + O ( t - 4 + ) for bounded |x|, where $$c\in {\mathbb {C}}$$ c ∈ C is an explicit constant. This decay also holds along the event horizon on Kerr spacetimes and thus renders a result by Luk–Sbierski on the linear scalar instability of the Cauchy horizon unconditional. We moreover prove inverse quadratic decay of the radiation field, with explicit leading order term. We establish analogous results for scattering by stationary potentials with inverse cubic spatial decay. On the Schwarzschild spacetime, we prove pointwise $$t^{-2 l-3}$$ t - 2 l - 3 decay for waves with angular frequency at least l, and $$t^{-2 l-4}$$ t - 2 l - 4 decay for waves which are in addition initially static. This definitively settles Price’s law for linear scalar waves in full generality. The heart of the proof is the analysis of the resolvent at low energies. Rather than constructing its Schwartz kernel explicitly, we proceed more directly using the geometric microlocal approach to the limiting absorption principle pioneered by Melrose and recently extended to the zero energy limit by Vasy.


Author(s):  
Christoph Kehle

AbstractThe purpose of this paper is to show an unexpected connection between Diophantine approximation and the behavior of waves on black hole interiors with negative cosmological constant $$\Lambda <0$$ Λ < 0 and explore the consequences of this for the Strong Cosmic Censorship conjecture in general relativity. We study linear scalar perturbations $$\psi $$ ψ of Kerr–AdS solving $$\Box _g\psi -\frac{2}{3}\Lambda \psi =0$$ □ g ψ - 2 3 Λ ψ = 0 with reflecting boundary conditions imposed at infinity. Understanding the behavior of $$\psi $$ ψ at the Cauchy horizon corresponds to a linear analog of the problem of Strong Cosmic Censorship. Our main result shows that if the dimensionless black hole parameters mass $${\mathfrak {m}} = M \sqrt{-\Lambda }$$ m = M - Λ and angular momentum $${\mathfrak {a}} = a \sqrt{-\Lambda }$$ a = a - Λ satisfy a certain non-Diophantine condition, then perturbations $$\psi $$ ψ arising from generic smooth initial data blow up $$|\psi |\rightarrow +\infty $$ | ψ | → + ∞ at the Cauchy horizon. The proof crucially relies on a novel resonance phenomenon between stable trapping on the black hole exterior and the poles of the interior scattering operator that gives rise to a small divisors problem. Our result is in stark contrast to the result on Reissner–Nordström–AdS (Kehle in Commun Math Phys 376(1):145–200, 2020) as well as to previous work on the analogous problem for $$\Lambda \ge 0$$ Λ ≥ 0 —in both cases such linear scalar perturbations were shown to remain bounded. As a result of the non-Diophantine condition, the set of parameters $${\mathfrak {m}}, {\mathfrak {a}}$$ m , a for which we show blow-up forms a Baire-generic but Lebesgue-exceptional subset of all parameters below the Hawking–Reall bound. On the other hand, we conjecture that for a set of parameters $${\mathfrak {m}}, {\mathfrak {a}} $$ m , a which is Baire-exceptional but Lebesgue-generic, all linear scalar perturbations remain bounded at the Cauchy horizon $$|\psi |\le C$$ | ψ | ≤ C . This suggests that the validity of the $$C^0$$ C 0 -formulation of Strong Cosmic Censorship for $$\Lambda <0$$ Λ < 0 may change in a spectacular way according to the notion of genericity imposed.


Author(s):  
Talha Bin Masood ◽  
Ingrid Hotz

AbstractIn this chapter we present an accurate derivation of the distribution of scalar invariants with quadratic behavior represented as continuous histograms. The anisotropy field, computed from a two-dimensional piece-wise linear tensor field, is used as an example and is discussed in all details. Histograms visualizing an approximation of the distribution of scalar values play an important role in visualization. They are used as an interface for the design of transfer-functions for volume rendering or feature selection in interactive interfaces. While there are standard algorithms to compute continuous histograms for piece-wise linear scalar fields, they are not directly applicable to tensor invariants with non-linear, often even non-convex behavior in cells when applying linear tensor interpolation. Our derivation is based on a sub-division of the mesh in triangles that exhibit a monotonic behavior. We compare the results to a naïve approach based on linear interpolation on the original mesh or the subdivision.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
Wei Li ◽  
Ying-Long Wang ◽  
Tai-Fu Feng ◽  
Guo-Li Wang

Abstract We solved the instantaneous Bethe–Salpeter equation for heavy pseudoscalars in different kernels, where the kernels are obtained using linear scalar potential plus one gluon exchange vector potentials in Feynman gauge, Landau gauge, Coulomb gauge and time-component Coulomb gauge. Since we cannot give a complete QCD-based calculation, the results are gauge dependent. We compared the obtained mass spectra of heavy pseudoscalars between different kernels, found that using the same parameters we obtain the smallest mass splitting in time-component Coulomb gauge, the similar largest mass splitting in Feynman and Coulomb gauges, middle size splitting in Landau gauge.


2020 ◽  
Vol 20 (3) ◽  
pp. 437-458 ◽  
Author(s):  
Jérôme Droniou ◽  
Robert Eymard ◽  
Thierry Gallouët ◽  
Raphaèle Herbin

AbstractWe adapt the Gradient Discretisation Method (GDM), originally designed for elliptic and parabolic partial differential equations, to the case of a linear scalar hyperbolic equations. This enables the simultaneous design and convergence analysis of various numerical schemes, corresponding to the methods known to be GDMs, such as finite elements (conforming or non-conforming, standard or mass-lumped), finite volumes on rectangular or simplicial grids, and other recent methods developed for general polytopal meshes. The scheme is of centred type, with added linear or non-linear numerical diffusion. We complement the convergence analysis with numerical tests based on the mass-lumped {\mathbb{P}_{1}} conforming and non-conforming finite element and on the hybrid finite volume method.


2020 ◽  
Vol 34 (04) ◽  
pp. 4044-4051
Author(s):  
Hongyu Guo

Data augmentation with Mixup (Zhang et al. 2018) has shown to be an effective model regularizer for current art deep classification networks. It generates out-of-manifold samples through linearly interpolating inputs and their corresponding labels of random sample pairs. Despite its great successes, Mixup requires convex combination of the inputs as well as the modeling targets of a sample pair, thus significantly limits the space of its synthetic samples and consequently its regularization effect. To cope with this limitation, we propose “nonlinear Mixup”. Unlike Mixup where the input and label pairs share the same, linear, scalar mixing policy, our approach embraces nonlinear interpolation policy for both the input and label pairs, where the mixing policy for the labels is adaptively learned based on the mixed input. Experiments on benchmark sentence classification datasets indicate that our approach significantly improves upon Mixup. Our empirical studies also show that the out-of-manifold samples generated by our strategy encourage training samples in each class to form a tight representation cluster that is far from others.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 115 ◽  
Author(s):  
Jerónimo Cortez ◽  
Guillermo A. Mena Marugán ◽  
José Velhinho

In this work, we present an overview of uniqueness results derived in recent years for the quantization of Gowdy cosmological models and for (test) Klein-Gordon fields minimally coupled to Friedmann-Lemaître-Robertson-Walker, de Sitter, and Bianchi I spacetimes. These results are attained by imposing the criteria of symmetry invariance and of unitary implementability of the dynamics. This powerful combination of criteria allows not only to address the ambiguity in the representation of the canonical commutation relations, but also to single out a preferred set of fundamental variables. For the sake of clarity and completeness in the presentation (essentially as a background and complementary material), we first review the classical and quantum theories of a scalar field in globally hyperbolic spacetimes. Special emphasis is made on complex structures and the unitary implementability of symplectic transformations.


Sign in / Sign up

Export Citation Format

Share Document