scholarly journals Effect of Fracture on ESR Intensity Using a Low-Velocity Rotary Shear Apparatus

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Kiriha Tanaka ◽  
Jun Muto ◽  
Yasuo Yabe ◽  
Toshitaka Oka ◽  
Hiroyuki Nagahama

Abstract We sheared simulated-quartz gouges using a low-velocity rotary shear apparatus and evaluated the relationship between electron spin resonance (ESR) intensity and displacement quantitatively considering problems of contaminants. ESR intensity of E1’ centre increased while OHC and peroxy centre kept constant with the increasing displacement up to 1.4 m. Microstructural analysis showed grain size reduction and fracture of starting gouges; hence, the fracture can affect the change in ESR intensity. ESR measurements were also conducted for starting gouges with variable amounts of contaminants, and it was confirmed that the effect of contaminants on the change in ESR intensity was negligible. Moreover, we estimated the temperature rise by the frictional heating on the surface and between particles, and it was shown that the effect of frictional heating on ESR intensity was also negligible in our experimental condition. Therefore, we could clarify the relationship between ESR intensity and fracturing with various displacements separately from contaminants and frictional heating. The results imply that the zero-setting of ESR signals cannot occur by the fracture with low frictional heating at the shallow depth.

2013 ◽  
Vol 40 (4) ◽  
pp. 334-340 ◽  
Author(s):  
Aiko Shimada ◽  
Masashi Takada ◽  
Shin Toyoda

AbstractThe variation of electron spin resonance (ESR) signal intensities and thermoluminescence colour images (TLCIs) of quartz was investigated in the present study for various rocks and sediments in Japan, to discuss the possibilities of identifying the sediment provenance. The ESR signal intensity of the E1’ centre in the same grain size in granitic quartz varies from sample to sample, except for that in Quaternary samples of volcanic sediment, which is very low, close to the noise level. It was found that the diagram, ESR intensities of Al versus Ti-Li centre signal intensities, distinguish volcanic from the same grain size in granitic quartz as well as distinguish individual tephra from another. The TLCIs from volcanic quartz and some granitic quartz samples is almost red and that from the rest of granitic and metamudstone quartz is blue as results of TLCIs although the emission intensities are different. Our results suggest that examining the multiple-centre signal intensities of ESR and the TLCIs are effective to identify the source of quartz and to estimate the sediment provenance.


Sign in / Sign up

Export Citation Format

Share Document