scholarly journals Analyses of Countermovement Jump Performance in Time and Frequency Domains

2021 ◽  
Vol 78 (1) ◽  
pp. 41-48
Author(s):  
Zhanxin Sha ◽  
Zhaoxian Zhou ◽  
Boyi Dai

Abstract This study aimed to analyze counter-movement jump (CMJ) performance in time and frequency domains. Fortyfour Division I American football players participated in the study. Kinetic variables were collected from both dominant and non-dominant legs using two force plates. Normalized peak power, normalized net impulse, and normalized peak force significantly correlated with jump height (r = .960, r = .998, r = .725, respectively with p < .05). The mean frequency component was significantly correlated with CMJ performance (r = .355 with p < .05). The reliability of the frequency variables was higher than the time domain variables. Frequency domain variables showed weaker correlations with jump height compared with time domain variables. Frequency domain analysis provides frequency components, which represent the rate of energy transmission from the eccentric phase to the end of the push-off phase. Frequency component information may provide additional information for the analyses of CMJ performance for athletes.

1997 ◽  
Vol 40 (4) ◽  
pp. 912-924 ◽  
Author(s):  
Ken I. McAnally ◽  
Peter C. Hansen ◽  
Piers L. Cornelissen ◽  
John F. Stein

Many people with developmental dyslexia have difficulty perceiving stop consonant contrasts as effectively as other people and it has been suggested that this may be due to perceptual limitations of a temporal nature. Accordingly, we predicted that perception of such stimuli by listeners with dyslexia might be improved by stretching them in time—equivalent to speaking slowly. Conversely, their perception of the same stimuli ought to be made even worse by compressing them in time—equivalent to speaking quickly. We tested 15 children with dyslexia on their ability to identify correctly consonant-vowel-consonant (CVC) stimuli that had been stretched or compressed in the time domain. We also tested their perception of the same CVC stimuli after the formant transitions had been stretched or compressed in the frequency domain. Contrary to our predictions, we failed to find any systematic improvement in their performance with either manipulation. We conclude that simple manipulations in the time and frequency domains are unlikely to benefit the ability of people with dyslexia to discriminate between CVCs containing stop consonants.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Wenbo Yang ◽  
Ran Yuan ◽  
Juan Wang

In this paper, we analyse the mitigation effects of open trenches on the vibrations induced by subway trains. The study is performed by using both physical model tests and numerical simulations. The effectiveness is evaluated by calculating the frequency response function (FRF) and the vibration acceleration peak (VAP) in both time and frequency domains. The experimental and numerical results demonstrate that the open trench has clear effects on the dynamic soil response. Both time and frequency domain results suggest that the dynamic response of the soils beyond the open trenches could be significantly affected, due to the existence of the open trench. According to the frequency domain analysis, the inclusion of open trenches could effectively reduce the soil response in a higher frequency range. Due to reflection effects at the boundaries of the trench, an amplification of the soil response in front of the open trench is observed. Parametric study by means of numerical simulations is also performed. The width of the open trench demonstrates negligible effects on the dynamic soil response, whilst the trench depth exhibits a large influence on the trench isolation performance. With an increase in the trench depth, the isolation performance is significantly improved. It is concluded that the open trenches perform well as an isolation barrier, in mitigating the vibration induced by subway trains.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3606
Author(s):  
Jing-Yuan Lin ◽  
Chuan-Ting Chen ◽  
Kuan-Hung Chen ◽  
Yi-Feng Lin

Three-phase wye–delta LLC topology is suitable for voltage step down and high output current, and has been used in the industry for some time, e.g., for server power and EV charger. However, no comprehensive circuit analysis has been performed for three-phase wye–delta LLC. This paper provides complete analysis methods for three-phase wye–delta LLC. The analysis methods include circuit operation, time domain analysis, frequency domain analysis, and state–plane analysis. Circuit operation helps determine the circuit composition and operation sequence. Time domain analysis helps understand the detail operation, equivalent circuit model, and circuit equation. Frequency domain analysis helps obtain the curve of the transfer function and assists in circuit design. State–plane analysis is used for optimal trajectory control (OTC). These analyses not only can calculate the voltage/current stress, but can also help design three-phase wye-delta connected LLC and provide the OTC control reference. In addition, this paper uses PSIM simulation to verify the correctness of analysis. At the end, a 5-kW three-phase wye–delta LLC prototype is realized. The specification of the prototype is a DC input voltage of 380 V and output voltage/current of 48 V/105 A. The peak efficiency is 96.57%.


2019 ◽  
Vol 11 (10) ◽  
pp. 989-999 ◽  
Author(s):  
Mahmoud Alizadeh ◽  
Peter Händel ◽  
Daniel Rönnow

AbstractModern telecommunications are moving towards (massive) multi-input multi-output (MIMO) systems in 5th generation (5G) technology, increasing the dimensionality of the systems dramatically. In this paper, the impairments of radio frequency (RF) power amplifiers (PAs) in a 3 × 3 MIMO system are compensated in both the time and the frequency domains. A three-dimensional (3D) time-domain memory polynomial-type model is proposed as an extension of conventional 2D models. Furthermore, a 3D frequency-domain technique is formulated based on the proposed time-domain model to reduce the dimensionality of the model, while preserving the performance in terms of model errors. In the 3D frequency-domain technique, the bandwidth of the system is split into several narrow sub-bands, and the parameters of the model are estimated for each sub-band. This approach requires less computational complexity, and also the procedure of the parameters estimation for each sub-band can be implemented independently. The device-under-test consists of three RF PAs including input and output cross-talk channels. The proposed techniques are evaluated in both behavioral modeling and digital pre-distortion (DPD) perspectives. The experimental results show that the proposed DPD technique can compensate the errors of non-linearity and memory effects in the both time and frequency domains.


1994 ◽  
Vol 116 (4) ◽  
pp. 781-786 ◽  
Author(s):  
C. J. Goh

The convergence of learning control is traditionally analyzed in the time domain. This is because a finite planning horizon is often assumed and the analysis in time domain can be extended to time-varying and nonlinear systems. For linear time-invariant (LTI) systems with infinite planning horizon, however, we show that simple frequency domain techniques can be used to quickly derive several interesting results not amenable to time-domain analysis, such as predicting the rate of convergence or the design of optimum learning control law. We explain a paradox arising from applying the finite time convergence criterion to the infinite time learning control problem, and propose the use of current error feedback for controlling possibly unstable systems.


2012 ◽  
Vol 20 (26) ◽  
pp. B581 ◽  
Author(s):  
Asher Voskoboinik ◽  
Dvora Rogawski ◽  
Hao Huang ◽  
Yair Peled ◽  
Alan E. Willner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document